mscroggs.co.uk
mscroggs.co.uk

subscribe

Puzzles

13 December

There are 6 ways to split the sequence of the numbers 1 to 5 into three shorter sequences:
Today's number is the number of ways to split the sequence of the numbers 1 to 10 into five shorter sequences.

Show answer

12 December

The diagram to the left shows a large black square. Inside this square, two red squares have been drawn. (The sides of the red squares are parallel to the sides of the black square; each red square shares a vertex with the black square; and the two red squares share a vertex.) A blue quadrilateral has then been drawn with vertices at two corners of the black square and the centres of the red squares.
The area of the blue quadrilateral is 167. What is the area of the black square?

Show answer

11 December

Noel has a large pile of cards. Half of them are red, the other half are black. Noel splits the cards into two piles: pile A and pile B.
Two thirds of the cards in pile A are red. Noel then moves 108 red cards from pile A to pile B. After this move, two thirds of the cards in pile B are red.
How many cards did Noel start with?
Note: There was a mistake in the original version of today's puzzle. The number 21 has been replaced with 108.

Show answer

10 December

Today's number is the smallest multiple of 24 whose digits add up to 24.

Show answer

9 December

Put the digits 1 to 9 (using each digit exactly once) in the boxes so that the sums are correct. The sums should be read left to right and top to bottom ignoring the usual order of operations. For example, 4+3×2 is 14, not 10. Today's number is the product of the numbers in the red boxes.
+×= 54
× + ÷
-÷= 1
÷ - ×
+-= 6
=
18
=
6
=
18

Show answer

Tags: numbers, grids

8 December

The residents of Octingham have 8 fingers. Instead of counting in base ten, they count in base eight: the digits of their numbers represent ones, eights, sixty-fours, two-hundred-and-fifty-sixes, etc instead of ones, tens, hundreds, thousands, etc.
For example, a residents of Octingham would say 12, 22 and 52 instead of our usual numbers 10, 18 and 42.
Today's number is what a resident of Octingham would call 11 squared (where the 11 is also written using the Octingham number system).

Show answer

7 December

There are 15 dominos that can be made using the numbers 0 to 4 (inclusive):
The sum of all the numbers on all these dominos is 60.
Today's number is the sum of all the numbers on all the dominos that can be made using the numbers 5 to 10 (inclusive).

Show answer

6 December

There are 12 ways of placing 2 tokens on a 2×4 grid so that no two tokens are next to each other horizonally, vertically or diagonally:
Today's number is the number of ways of placing 5 tokens on a 2×10 grid so that no two tokens are next to each other horizonally, vertically or diagonally.

Show answer

Archive

Show me a random puzzle
 Most recent collections 

Advent calendar 2024

Advent calendar 2023

Advent calendar 2022

Advent calendar 2021


List of all puzzles

Tags

menace fractions complex numbers crossnumbers volume proportion trigonometry surds functions digits shapes sets cryptic clues routes symmetry shape factors numbers grids planes perimeter bases calculus even numbers probabilty hexagons gerrymandering matrices quadratics neighbours integration unit fractions speed differentiation powers money median prime numbers probability rugby combinatorics polygons multiplication percentages people maths graphs means area addition square grids tangents the only crossnumber multiples square roots geometric mean sum to infinity consecutive integers odd numbers dominos algebra tournaments number sums integers dodecagons arrows factorials expansions albgebra digital products triangles logic quadrilaterals indices palindromes digital clocks geometric means elections products 2d shapes time colouring chess ellipses crosswords irreducible numbers medians dates floors lines polynomials circles balancing cards parabolas tiling grids cube numbers advent sport axes doubling square numbers ave dice pascal's triangle partitions coordinates sequences determinants regular shapes cryptic crossnumbers decahedra taxicab geometry star numbers scales spheres division consecutive numbers folding tube maps geometry averages clocks christmas squares games cubics wordplay chalkdust crossnumber rectangles 3d shapes remainders binary coins numbers range pentagons books mean triangle numbers perfect numbers angles chocolate

Archive

Show me a random puzzle
▼ show ▼
© Matthew Scroggs 2012–2025