mscroggs.co.uk
mscroggs.co.uk

subscribe

Puzzles

Odd and even outputs

Let \(g:\mathbb{N}\times\mathbb{N}\rightarrow\mathbb{N}\) be a function.
This means that \(g\) takes two natural number inputs and gives one natural number output. For example if \(g\) is defined by \(g(n,m)=n+m\) then \(g(3,4)=7\) and \(g(10,2)=12\).
The function \(g(n,m)=n+m\) will give an even output if \(n\) and \(m\) are both odd or both even and an odd output if one is odd and the other is even. This could be summarised in the following table:
\(n\)
oddeven
\(m\)oddevenodd
eoddeven
Using only \(+\) and \(\times\), can you construct functions \(g(n,m)\) which give the following output tables:
\(n\)
oddeven
\(m\)oddoddodd
eoddodd
\(n\)
oddeven
\(m\)oddoddodd
eoddeven
\(n\)
oddeven
\(m\)oddoddodd
eevenodd
\(n\)
oddeven
\(m\)oddoddodd
eeveneven
\(n\)
oddeven
\(m\)oddoddeven
eoddodd
\(n\)
oddeven
\(m\)oddoddeven
eoddeven
\(n\)
oddeven
\(m\)oddoddeven
eevenodd
\(n\)
oddeven
\(m\)oddoddeven
eeveneven
\(n\)
oddeven
\(m\)oddevenodd
eoddodd
\(n\)
oddeven
\(m\)oddevenodd
eoddeven
\(n\)
oddeven
\(m\)oddevenodd
eevenodd
\(n\)
oddeven
\(m\)oddevenodd
eeveneven
\(n\)
oddeven
\(m\)oddeveneven
eoddodd
\(n\)
oddeven
\(m\)oddeveneven
eoddeven
\(n\)
oddeven
\(m\)oddeveneven
eevenodd
\(n\)
oddeven
\(m\)oddeveneven
eeveneven

Show answer & extension

Tags: functions
If you enjoyed this puzzle, check out Sunday Afternoon Maths XXVI,
puzzles about functions, or a random puzzle.

Archive

Show me a random puzzle
 Most recent collections 

Advent calendar 2024

Advent calendar 2023

Advent calendar 2022

Advent calendar 2021


List of all puzzles

Tags

crossnumbers trigonometry remainders arrows planes rectangles advent dominos irreducible numbers albgebra fractions digital products time grids mean doubling ellipses games factorials perfect numbers logic number square roots cube numbers range bases money consecutive integers sport dates graphs pentagons cubics shapes squares factors folding tube maps angles cards functions algebra ave partitions chocolate medians geometry means probability axes square numbers cryptic clues surds multiples volume integration spheres odd numbers differentiation tiling geometric means powers combinatorics coordinates division products symmetry elections crosswords clocks 3d shapes averages christmas addition quadrilaterals geometric mean star numbers 2d shapes people maths polynomials regular shapes proportion triangles tournaments scales median decahedra triangle numbers circles unit fractions prime numbers menace percentages palindromes complex numbers area numbers wordplay even numbers neighbours dodecagons numbers grids quadratics coins square grids tangents matrices colouring floors perimeter sets probabilty calculus indices chess binary integers expansions shape balancing sums dice digital clocks sequences determinants pascal's triangle polygons the only crossnumber parabolas lines cryptic crossnumbers routes consecutive numbers taxicab geometry speed hexagons gerrymandering digits rugby books chalkdust crossnumber multiplication sum to infinity

Archive

Show me a random puzzle
▼ show ▼
© Matthew Scroggs 2012–2025