mscroggs.co.uk
mscroggs.co.uk

subscribe

Puzzles

Two

Find \(a\) such that \(a+(a+A)^{-1}=2\), where \(A=(a+A)^{-1}\).
ie. \(a + \frac{1}{a + \frac{1}{a + \frac{1}{a + \frac{1}{...}}}} = 2\).
Find \(b\) such that \(b+(b+B)^{\frac{1}{2}}=2\), where \(B=(b+B)^{\frac{1}{2}}\).
ie. \(b + \sqrt{b + \sqrt{b + \sqrt{b + \sqrt{...}}}} = 2\).
Find \(c\) such that \(c+(c+C)^{2}=2\), where \(C=(c+C)^{2}\).
In terms of \(k\), find \(d\) such that \(d+(d+D)^{k}=2\), where \(D=(d+D)^{k}\).

Show answer & extension

Tags: numbers
If you enjoyed this puzzle, check out Sunday Afternoon Maths VIII,
puzzles about numbers, or a random puzzle.

Archive

Show me a random puzzle
 Most recent collections 

Advent calendar 2024

Advent calendar 2023

Advent calendar 2022

Advent calendar 2021


List of all puzzles

Tags

the only crossnumber speed multiplication polygons dates time probabilty shape 2d shapes calculus geometry numbers grids folding tube maps neighbours numbers binary squares coordinates fractions advent crosswords means prime numbers games cryptic clues square numbers averages angles square roots indices regular shapes differentiation consecutive integers sets ellipses gerrymandering surds menace colouring volume dice percentages quadrilaterals cryptic crossnumbers expansions area sum to infinity people maths division taxicab geometry factorials cards products chess geometric means grids clocks cube numbers books algebra perfect numbers addition digital clocks triangles spheres axes digital products square grids complex numbers digits geometric mean chocolate sums ave mean tournaments irreducible numbers graphs balancing parabolas logic cubics probability doubling integers proportion dodecagons lines remainders arrows sport crossnumbers median money shapes coins even numbers dominos consecutive numbers matrices number star numbers circles perimeter decahedra sequences unit fractions tiling polynomials partitions determinants albgebra medians odd numbers rugby chalkdust crossnumber elections floors triangle numbers pascal's triangle combinatorics factors palindromes 3d shapes quadratics trigonometry planes christmas wordplay tangents powers functions range routes symmetry hexagons rectangles bases scales integration pentagons multiples

Archive

Show me a random puzzle
▼ show ▼
© Matthew Scroggs 2012–2025