mscroggs.co.uk
mscroggs.co.uk

subscribe

Puzzles

Two

Find \(a\) such that \(a+(a+A)^{-1}=2\), where \(A=(a+A)^{-1}\).
ie. \(a + \frac{1}{a + \frac{1}{a + \frac{1}{a + \frac{1}{...}}}} = 2\).
Find \(b\) such that \(b+(b+B)^{\frac{1}{2}}=2\), where \(B=(b+B)^{\frac{1}{2}}\).
ie. \(b + \sqrt{b + \sqrt{b + \sqrt{b + \sqrt{...}}}} = 2\).
Find \(c\) such that \(c+(c+C)^{2}=2\), where \(C=(c+C)^{2}\).
In terms of \(k\), find \(d\) such that \(d+(d+D)^{k}=2\), where \(D=(d+D)^{k}\).

Show answer & extension

Tags: numbers
If you enjoyed this puzzle, check out Sunday Afternoon Maths VIII,
puzzles about numbers, or a random puzzle.

Archive

Show me a random puzzle
 Most recent collections 

Advent calendar 2024

Advent calendar 2023

Advent calendar 2022

Advent calendar 2021


List of all puzzles

Tags

triangles range logic wordplay folding tube maps crosswords colouring time perfect numbers cryptic clues chocolate triangle numbers sequences consecutive integers cubics chess number dice cube numbers christmas probabilty geometry cards shapes surds irreducible numbers numbers rugby differentiation coins square roots shape regular shapes ave sport geometric means numbers grids combinatorics graphs dodecagons books indices quadrilaterals people maths pascal's triangle probability parabolas star numbers fractions grids mean albgebra taxicab geometry angles cryptic crossnumbers expansions scales routes geometric mean partitions lines floors hexagons digits rectangles trigonometry area polynomials 2d shapes products neighbours binary division arrows chalkdust crossnumber digital products crossnumbers percentages multiples functions elections addition speed determinants digital clocks coordinates medians bases prime numbers multiplication decahedra square numbers even numbers symmetry 3d shapes averages money sets tiling sum to infinity unit fractions consecutive numbers integration menace remainders matrices palindromes integers clocks powers games planes axes dates means balancing volume spheres doubling advent factorials calculus algebra odd numbers gerrymandering factors complex numbers quadratics polygons tournaments squares tangents proportion sums square grids the only crossnumber ellipses circles median perimeter pentagons dominos

Archive

Show me a random puzzle
▼ show ▼
© Matthew Scroggs 2012–2025