mscroggs.co.uk
mscroggs.co.uk

subscribe

Puzzles

Two

Find \(a\) such that \(a+(a+A)^{-1}=2\), where \(A=(a+A)^{-1}\).
ie. \(a + \frac{1}{a + \frac{1}{a + \frac{1}{a + \frac{1}{...}}}} = 2\).
Find \(b\) such that \(b+(b+B)^{\frac{1}{2}}=2\), where \(B=(b+B)^{\frac{1}{2}}\).
ie. \(b + \sqrt{b + \sqrt{b + \sqrt{b + \sqrt{...}}}} = 2\).
Find \(c\) such that \(c+(c+C)^{2}=2\), where \(C=(c+C)^{2}\).
In terms of \(k\), find \(d\) such that \(d+(d+D)^{k}=2\), where \(D=(d+D)^{k}\).

Show answer & extension

Tags: numbers
If you enjoyed this puzzle, check out Sunday Afternoon Maths VIII,
puzzles about numbers, or a random puzzle.

Archive

Show me a random puzzle
 Most recent collections 

Advent calendar 2024

Advent calendar 2023

Advent calendar 2022

Advent calendar 2021


List of all puzzles

Tags

triangle numbers matrices geometric means spheres ave sets polygons numbers coins cryptic crossnumbers books binary scales dodecagons advent integration averages fractions dates median products tangents perfect numbers digital clocks crossnumbers symmetry probabilty square roots the only crossnumber regular shapes 3d shapes addition people maths arrows consecutive integers grids ellipses money coordinates chess irreducible numbers geometry indices number division quadratics palindromes folding tube maps neighbours bases multiplication volume rugby dice star numbers even numbers trigonometry christmas odd numbers quadrilaterals factors proportion range surds cards functions angles squares cubics integers cube numbers doubling pascal's triangle calculus floors logic powers complex numbers multiples routes area prime numbers consecutive numbers clocks partitions digital products unit fractions square grids colouring sums remainders determinants games pentagons sequences medians percentages gerrymandering planes mean crosswords tiling perimeter sport hexagons chocolate factorials axes sum to infinity decahedra time taxicab geometry balancing geometric mean rectangles digits 2d shapes means numbers grids cryptic clues expansions parabolas circles lines square numbers chalkdust crossnumber speed tournaments shapes shape probability menace differentiation wordplay combinatorics elections algebra graphs polynomials triangles albgebra dominos

Archive

Show me a random puzzle
▼ show ▼
© Matthew Scroggs 2012–2025