Triangle numbers

Let \(T_n\) be the \(n^\mathrm{th}\) triangle number. Find \(n\) such that: $$T_n+T_{n+1}+T_{n+2}+T_{n+3}=T_{n+4}+T_{n+5}$$

Show answer & extension

If you enjoyed this puzzle, check out Sunday Afternoon Maths VI,
puzzles about numbers, or a random puzzle.


Show me a random puzzle
 Most recent collections 

Advent calendar 2019

Sunday Afternoon Maths LXVII

Coloured weights
Not Roman numerals

Advent calendar 2018

Sunday Afternoon Maths LXVI

Cryptic crossnumber #2

List of all puzzles


division volume chocolate graphs digital clocks multiples folding tube maps shape doubling books percentages proportion probability clocks number coordinates parabolas advent chess the only crossnumber christmas rectangles routes odd numbers sport games remainders square roots elections crossnumbers cube numbers addition 3d shapes ellipses products algebra money menace calculus pascal's triangle differentiation hexagons median squares dodecagons factors prime numbers digits ave crosswords angles mean integers wordplay means dice tiling functions unit fractions dates indices square numbers multiplication colouring scales balancing regular shapes surds floors cryptic clues trigonometry rugby 2d shapes partitions dominos arrows shapes speed grids sequences symmetry averages spheres palindromes sum to infinity complex numbers star numbers logic probabilty factorials sums triangles cards range numbers planes perimeter polygons chalkdust crossnumber geometry cryptic crossnumbers people maths bases lines time circles gerrymandering integration coins irreducible numbers area fractions taxicab geometry crossnumber perfect numbers triangle numbers quadratics


Show me a random puzzle
▼ show ▼
© Matthew Scroggs 2012–2020