mscroggs.co.uk
mscroggs.co.uk

subscribe

Puzzles

Triangle numbers

Let \(T_n\) be the \(n^\mathrm{th}\) triangle number. Find \(n\) such that: $$T_n+T_{n+1}+T_{n+2}+T_{n+3}=T_{n+4}+T_{n+5}$$

Show answer & extension

If you enjoyed this puzzle, check out Sunday Afternoon Maths VI,
puzzles about triangle numbers, or a random puzzle.

Archive

Show me a random puzzle
 Most recent collections 

Advent calendar 2024

Advent calendar 2023

Advent calendar 2022

Advent calendar 2021


List of all puzzles

Tags

chess fractions crosswords multiplication cards percentages shapes addition money powers pascal's triangle star numbers integration integers people maths dodecagons digital clocks unit fractions decahedra taxicab geometry median regular shapes multiples clocks chalkdust crossnumber neighbours menace numbers lines arrows number logic quadrilaterals books 2d shapes algebra irreducible numbers geometry balancing cryptic crossnumbers surds scales axes partitions christmas tournaments binary triangles parabolas sets differentiation determinants probabilty coins colouring pentagons means folding tube maps square numbers consecutive numbers cryptic clues planes odd numbers numbers grids graphs cubics hexagons dates advent geometric means consecutive integers albgebra cube numbers doubling products games polynomials combinatorics rectangles elections complex numbers time remainders squares sport area square roots gerrymandering spheres digital products trigonometry wordplay ellipses sums factorials digits factors square grids tiling speed grids sum to infinity routes circles the only crossnumber coordinates perfect numbers rugby chocolate polygons probability 3d shapes perimeter matrices sequences proportion medians crossnumbers quadratics division bases floors mean shape geometric mean prime numbers tangents dominos angles expansions functions palindromes indices volume dice even numbers averages range triangle numbers ave symmetry calculus

Archive

Show me a random puzzle
▼ show ▼
© Matthew Scroggs 2012–2025