mscroggs.co.uk
mscroggs.co.uk

subscribe

Puzzles

Triangle numbers

Let \(T_n\) be the \(n^\mathrm{th}\) triangle number. Find \(n\) such that: $$T_n+T_{n+1}+T_{n+2}+T_{n+3}=T_{n+4}+T_{n+5}$$

Show answer & extension

If you enjoyed this puzzle, check out Sunday Afternoon Maths VI,
puzzles about triangle numbers, or a random puzzle.

Archive

Show me a random puzzle
 Most recent collections 

Advent calendar 2024

Advent calendar 2023

Advent calendar 2022

Advent calendar 2021


List of all puzzles

Tags

people maths cryptic crossnumbers mean speed unit fractions factorials surds 2d shapes binary palindromes money coordinates logic digits scales complex numbers square roots algebra geometric mean addition dominos crosswords even numbers trigonometry integration cryptic clues polygons differentiation products probabilty indices medians routes axes folding tube maps cube numbers division doubling rugby perfect numbers integers pascal's triangle range remainders number ellipses multiples fractions calculus chalkdust crossnumber sets tangents square grids shapes decahedra graphs area sport symmetry tournaments gerrymandering geometric means coins taxicab geometry crossnumbers neighbours digital clocks angles square numbers probability colouring quadratics dates rectangles squares advent perimeter floors hexagons spheres geometry consecutive numbers parabolas regular shapes means cards median sum to infinity arrows pentagons functions dice the only crossnumber odd numbers circles bases quadrilaterals 3d shapes triangle numbers wordplay determinants polynomials averages volume digital products albgebra ave matrices irreducible numbers shape lines christmas dodecagons powers books chess numbers prime numbers grids combinatorics sums percentages elections cubics balancing partitions consecutive integers games factors numbers grids multiplication clocks menace triangles planes chocolate tiling time star numbers proportion sequences expansions

Archive

Show me a random puzzle
▼ show ▼
© Matthew Scroggs 2012–2025