mscroggs.co.uk
mscroggs.co.uk

subscribe

Comment

Comments

Comments in green were written by me. Comments in blue were not written by me.
@Matthew: Here is how I calculated it:

You want a specific set of 20 stickers. Imagine you have already \(n\) of these. The probability that the next sticker you buy is one that you want is
$$\frac{20-n}{682}.$$
The probability that the second sticker you buy is the next new sticker is
$$\mathbb{P}(\text{next sticker is not wanted})\times\mathbb{P}(\text{sticker after next is wanted})$$
$$=\frac{662+n}{682}\times\frac{20-n}{682}.$$
Following the same method, we can see that the probability that the \(i\)th sticker you buy is the next wanted sticker is
$$\left(\frac{662+n}{682}\right)^{i-1}\times\frac{20-n}{682}.$$
Using this, we can calculate the expected number of stickers you will need to buy until you find the next wanted one:
$$\sum_{i=1}^{\infty}i \left(\frac{20-n}{682}\right) \left(\frac{662+n}{682}\right)^{i-1} = \frac{682}{20-n}$$
Therefore, to get all 682 stickers, you should expect to buy
$$\sum_{n=0}^{19}\frac{682}{20-n} = 2453 \text{ stickers}.$$
Matthew
on /blog/56
               
@Matthew: Thank you for the calculations. Good job I ordered the stickers I wanted #IRN. 2453 stickers - that's more than the number you bought (1781) to collect all stickers!
Milad
on /blog/56
               
@Matthew: Here is how I calculated it:

You want a specific set of 20 stickers. Imagine you have already \(n\) of these. The probability that the next sticker you buy is one that you want is
$$\frac{20-n}{682}.$$
The probability that the second sticker you buy is the next new sticker is
$$\mathbb{P}(\text{next sticker is not wanted})\times\mathbb{P}(\text{sticker after next is wanted})$$
$$=\frac{662+n}{682}\times\frac{20-n}{682}.$$
Following the same method, we can see that the probability that the \(i\)th sticker you buy is the next wanted sticker is
$$\left(\frac{662+n}{682}\right)^{i-1}\times\frac{20-n}{682}.$$
Using this, we can calculate the expected number of stickers you will need to buy until you find the next wanted one:
$$\sum_{i=1}^{\infty}i \left(\frac{20-n}{682}\right) \left(\frac{662+n}{682}\right)^{i-1} = \frac{682}{20-n}$$
Therefore, to get all 682 stickers, you should expect to buy
$$\sum_{n=0}^{19}\frac{682}{20-n} = 2453 \text{ stickers}.$$
Matthew
on /blog/56
               
@Matthew: Thank you for the calculations. Good job I ordered the stickers I wanted #IRN. 2453 stickers - that's more than the number you bought (1781) to collect all stickers!
Milad
on /blog/56
               
@Matthew: Here is how I calculated it:

You want a specific set of 20 stickers. Imagine you have already \(n\) of these. The probability that the next sticker you buy is one that you want is
$$\frac{20-n}{682}.$$
The probability that the second sticker you buy is the next new sticker is
$$\mathbb{P}(\text{next sticker is not wanted})\times\mathbb{P}(\text{sticker after next is wanted})$$
$$=\frac{662+n}{682}\times\frac{20-n}{682}.$$
Following the same method, we can see that the probability that the \(i\)th sticker you buy is the next wanted sticker is
$$\left(\frac{662+n}{682}\right)^{i-1}\times\frac{20-n}{682}.$$
Using this, we can calculate the expected number of stickers you will need to buy until you find the next wanted one:
$$\sum_{i=1}^{\infty}i \left(\frac{20-n}{682}\right) \left(\frac{662+n}{682}\right)^{i-1} = \frac{682}{20-n}$$
Therefore, to get all 682 stickers, you should expect to buy
$$\sum_{n=0}^{19}\frac{682}{20-n} = 2453 \text{ stickers}.$$
Matthew
on /blog/56
               

Archive

Show me a random blog post
 2024 

Feb 2024

Zines, pt. 2

Jan 2024

Christmas (2023) is over
 2023 
▼ show ▼
 2022 
▼ show ▼
 2021 
▼ show ▼
 2020 
▼ show ▼
 2019 
▼ show ▼
 2018 
▼ show ▼
 2017 
▼ show ▼
 2016 
▼ show ▼
 2015 
▼ show ▼
 2014 
▼ show ▼
 2013 
▼ show ▼
 2012 
▼ show ▼

Tags

mathsteroids captain scarlet hannah fry matrix of cofactors chebyshev error bars hyperbolic surfaces triangles pac-man london advent calendar ucl radio 4 chess go nine men's morris latex plastic ratio oeis golden ratio determinants mean pizza cutting talking maths in public puzzles inverse matrices crochet royal institution the aperiodical pi approximation day logic programming interpolation mathsjam finite element method flexagons graph theory accuracy royal baby stirling numbers datasaurus dozen books coins javascript light weather station ternary rhombicuboctahedron machine learning data visualisation curvature games bempp sound binary logs frobel logo dates tmip geogebra christmas arithmetic game show probability propositional calculus reuleaux polygons draughts quadrilaterals platonic solids computational complexity correlation cross stitch newcastle noughts and crosses sobolev spaces countdown zines raspberry pi bodmas speed tennis sorting recursion realhats misleading statistics final fantasy electromagnetic field pi national lottery matrix multiplication bubble bobble wool simultaneous equations numerical analysis manchester science festival cambridge craft errors gather town braiding standard deviation asteroids stickers approximation gaussian elimination harriss spiral 24 hour maths folding tube maps boundary element methods convergence php databet rugby live stream golden spiral python hexapawn polynomials preconditioning martin gardner world cup anscombe's quartet probability youtube inline code numbers wave scattering turtles news guest posts christmas card exponential growth folding paper finite group mathslogicbot phd weak imposition reddit fractals signorini conditions people maths statistics estimation football gerry anderson menace dinosaurs a gamut of games big internet math-off trigonometry chalkdust magazine dragon curves matrix of minors pythagoras matrices runge's phenomenon european cup crossnumber fonts manchester palindromes geometry map projections hats video games data graphs fence posts pascal's triangle matt parker london underground dataset game of life edinburgh sport squares

Archive

Show me a random blog post
▼ show ▼
© Matthew Scroggs 2012–2024