mscroggs.co.uk
mscroggs.co.uk

subscribe

Comment

Comments

Comments in green were written by me. Comments in blue were not written by me.
@Matthew: Here is how I calculated it:

You want a specific set of 20 stickers. Imagine you have already \(n\) of these. The probability that the next sticker you buy is one that you want is
$$\frac{20-n}{682}.$$
The probability that the second sticker you buy is the next new sticker is
$$\mathbb{P}(\text{next sticker is not wanted})\times\mathbb{P}(\text{sticker after next is wanted})$$
$$=\frac{662+n}{682}\times\frac{20-n}{682}.$$
Following the same method, we can see that the probability that the \(i\)th sticker you buy is the next wanted sticker is
$$\left(\frac{662+n}{682}\right)^{i-1}\times\frac{20-n}{682}.$$
Using this, we can calculate the expected number of stickers you will need to buy until you find the next wanted one:
$$\sum_{i=1}^{\infty}i \left(\frac{20-n}{682}\right) \left(\frac{662+n}{682}\right)^{i-1} = \frac{682}{20-n}$$
Therefore, to get all 682 stickers, you should expect to buy
$$\sum_{n=0}^{19}\frac{682}{20-n} = 2453 \text{ stickers}.$$
Matthew
on /blog/56
               
@Matthew: Thank you for the calculations. Good job I ordered the stickers I wanted #IRN. 2453 stickers - that's more than the number you bought (1781) to collect all stickers!
Milad
on /blog/56
               
@Matthew: Here is how I calculated it:

You want a specific set of 20 stickers. Imagine you have already \(n\) of these. The probability that the next sticker you buy is one that you want is
$$\frac{20-n}{682}.$$
The probability that the second sticker you buy is the next new sticker is
$$\mathbb{P}(\text{next sticker is not wanted})\times\mathbb{P}(\text{sticker after next is wanted})$$
$$=\frac{662+n}{682}\times\frac{20-n}{682}.$$
Following the same method, we can see that the probability that the \(i\)th sticker you buy is the next wanted sticker is
$$\left(\frac{662+n}{682}\right)^{i-1}\times\frac{20-n}{682}.$$
Using this, we can calculate the expected number of stickers you will need to buy until you find the next wanted one:
$$\sum_{i=1}^{\infty}i \left(\frac{20-n}{682}\right) \left(\frac{662+n}{682}\right)^{i-1} = \frac{682}{20-n}$$
Therefore, to get all 682 stickers, you should expect to buy
$$\sum_{n=0}^{19}\frac{682}{20-n} = 2453 \text{ stickers}.$$
Matthew
on /blog/56
               
@Matthew: Thank you for the calculations. Good job I ordered the stickers I wanted #IRN. 2453 stickers - that's more than the number you bought (1781) to collect all stickers!
Milad
on /blog/56
               
@Matthew: Here is how I calculated it:

You want a specific set of 20 stickers. Imagine you have already \(n\) of these. The probability that the next sticker you buy is one that you want is
$$\frac{20-n}{682}.$$
The probability that the second sticker you buy is the next new sticker is
$$\mathbb{P}(\text{next sticker is not wanted})\times\mathbb{P}(\text{sticker after next is wanted})$$
$$=\frac{662+n}{682}\times\frac{20-n}{682}.$$
Following the same method, we can see that the probability that the \(i\)th sticker you buy is the next wanted sticker is
$$\left(\frac{662+n}{682}\right)^{i-1}\times\frac{20-n}{682}.$$
Using this, we can calculate the expected number of stickers you will need to buy until you find the next wanted one:
$$\sum_{i=1}^{\infty}i \left(\frac{20-n}{682}\right) \left(\frac{662+n}{682}\right)^{i-1} = \frac{682}{20-n}$$
Therefore, to get all 682 stickers, you should expect to buy
$$\sum_{n=0}^{19}\frac{682}{20-n} = 2453 \text{ stickers}.$$
Matthew
on /blog/56
               

Archive

Show me a random blog post
 2020 

Mar 2020

Log-scaled axes

Feb 2020

PhD thesis, chapter ∞
PhD thesis, chapter 5
PhD thesis, chapter 4
PhD thesis, chapter 3
Inverting a matrix
PhD thesis, chapter 2

Jan 2020

PhD thesis, chapter 1
Gaussian elimination
Matrix multiplication
Christmas (2019) is over
 2019 
▼ show ▼
 2018 
▼ show ▼
 2017 
▼ show ▼
 2016 
▼ show ▼
 2015 
▼ show ▼
 2014 
▼ show ▼
 2013 
▼ show ▼
 2012 
▼ show ▼

Tags

dates logs flexagons coins european cup graph theory news php raspberry pi frobel nine men's morris binary inverse matrices noughts and crosses go manchester finite element method martin gardner inline code platonic solids captain scarlet geometry misleading statistics folding tube maps golden ratio game show probability weak imposition error bars data speed tennis palindromes national lottery signorini conditions programming royal institution tmip mathsteroids matrices plastic ratio logic polynomials twitter chess sorting game of life bodmas matrix multiplication matt parker video games mathsjam people maths dragon curves trigonometry puzzles harriss spiral sport data visualisation chalkdust magazine braiding determinants mathslogicbot estimation machine learning asteroids wave scattering graphs golden spiral reddit bubble bobble ucl phd final fantasy realhats hannah fry light rhombicuboctahedron london pythagoras a gamut of games cross stitch electromagnetic field sobolev spaces christmas card computational complexity interpolation manchester science festival dataset pizza cutting royal baby hexapawn oeis gerry anderson statistics menace latex books craft reuleaux polygons hats london underground sound convergence advent calendar radio 4 big internet math-off arithmetic map projections exponential growth pac-man triangles preconditioning bempp accuracy draughts football python the aperiodical matrix of cofactors fractals boundary element methods numerical analysis matrix of minors probability approximation world cup curvature stickers propositional calculus rugby chebyshev ternary simultaneous equations weather station cambridge folding paper wool games javascript christmas countdown gaussian elimination talking maths in public

Archive

Show me a random blog post
▼ show ▼
© Matthew Scroggs 2012–2020