mscroggs.co.uk
mscroggs.co.uk

subscribe

Blog

World Cup stickers 2018, pt. 2

 2018-06-16 
This year, like every World Cup year, I've been collecting stickers to fill the official Panini World Cup sticker album. Back in March, I calculated that I should expect it to cost £268.99 to fill this year's album (if I order the last 50 stickers). As of 6pm yesterday, I need 47 stickers to complete the album (and have placed an order on the Panini website for these).

So... How much did it cost?

In total, I have bought 1781 stickers (including the 47 I ordered) at a cost of £275.93. The plot below shows the money spent against the number of stickers stuck in, compared with the what I predicted in March.
To create this plot, I've been keeping track of exactly which stickers were in each pack I bought. Using this data, we can look for a few more things. If you want to play with the data yourself, there's a link at the bottom to download it.

Swaps

The bar chart below shows the number of copies of each sticker I got (excluding the 47 that I ordered). Unsurprisingly, it looks a lot like random noise.
The sticker I got most copies of was sticker 545, showing Panana player Armando Cooper.
Armando Cooper on sticker 545
I got swaps of 513 different stickers, meaning I'm only 169 stickers short of filling a second album.

First pack of all swaps

Everyone who has every done a sticker book will remember the awful feeling you get when you first get a pack of all swaps. For me, the first time this happened was the 50th pack. The plot below shows when the first pack of all swaps occurred in 500,000 simulations.
Looks like I was really quite unlucky to get a pack of all swaps so soon.

Duplicates in a pack

In all the 345 packs that I bought, there wasn't a single pack that contained two copies of the same sticker. In fact, I don't remember ever getting two of the same sticker in a pack. For a while I've been wondering if this is because Panini ensure that packs don't contain duplicates, or if it's simply very unlikely that they do.
If it was down to unlikeliness, the probability of having no duplicates in one pack would be:
\begin{align} \mathbb{P}(\text{no duplicates in a pack}) &= 1 \times\frac{681}{682}\times\frac{680}{682}\times\frac{679}{682}\times\frac{678}{682}\\ &= 0.985 \end{align}
and the probability of none of my 345 containing a duplicate would be:
\begin{align} \mathbb{P}(\text{no duplicates in 345 packs}) &= 0.985^{345}\\ &= 0.00628 \end{align}
This is very very small, so it's safe to conclude that Panini do indeed ensure that packs do not contain duplicates.

The data

If you'd like to have a play with the data yourself, you can download it here. Let me know if you do anything with it...

Similar posts

World Cup stickers 2018, pt. 3
World Cup stickers 2018
World Cup stickers
Euro 2016 stickers

Comments

Comments in green were written by me. Comments in blue were not written by me.
 Add a Comment 


I will only use your email address to reply to your comment (if a reply is needed).

Allowed HTML tags: <br> <a> <small> <b> <i> <s> <sup> <sub> <u> <spoiler> <ul> <ol> <li>
To prove you are not a spam bot, please type "o" then "d" then "d" in the box below (case sensitive):

Archive

Show me a random blog post
 2020 

May 2020

A surprising fact about quadrilaterals
Interesting tautologies

Mar 2020

Log-scaled axes

Feb 2020

PhD thesis, chapter ∞
PhD thesis, chapter 5
PhD thesis, chapter 4
PhD thesis, chapter 3
Inverting a matrix
PhD thesis, chapter 2

Jan 2020

PhD thesis, chapter 1
Gaussian elimination
Matrix multiplication
Christmas (2019) is over
 2019 
▼ show ▼
 2018 
▼ show ▼
 2017 
▼ show ▼
 2016 
▼ show ▼
 2015 
▼ show ▼
 2014 
▼ show ▼
 2013 
▼ show ▼
 2012 
▼ show ▼

Tags

gerry anderson european cup numerical analysis map projections pizza cutting folding paper signorini conditions tmip ternary platonic solids graphs game of life big internet math-off royal baby nine men's morris interpolation game show probability propositional calculus programming menace matrix of cofactors phd binary realhats puzzles logic video games chebyshev plastic ratio christmas sound countdown fractals books bodmas sobolev spaces light bubble bobble matrix of minors asteroids final fantasy craft geogebra wool london underground weather station wave scattering mathslogicbot polynomials sorting convergence python statistics php finite element method simultaneous equations data visualisation world cup gaussian elimination golden ratio national lottery determinants curvature hannah fry logs latex dragon curves misleading statistics electromagnetic field dates exponential growth the aperiodical manchester mathsteroids inline code golden spiral harriss spiral triangles pac-man speed bempp london cambridge braiding trigonometry radio 4 dataset rugby chess error bars coins approximation palindromes javascript chalkdust magazine mathsjam rhombicuboctahedron go ucl oeis squares reddit data twitter flexagons graph theory manchester science festival people maths tennis noughts and crosses inverse matrices football accuracy captain scarlet matt parker draughts talking maths in public preconditioning machine learning folding tube maps weak imposition quadrilaterals news reuleaux polygons advent calendar christmas card royal institution a gamut of games hexapawn probability geometry matrix multiplication games arithmetic estimation matrices frobel martin gardner sport raspberry pi hats pythagoras computational complexity boundary element methods cross stitch stickers

Archive

Show me a random blog post
▼ show ▼
© Matthew Scroggs 2012–2020