mscroggs.co.uk
mscroggs.co.uk

subscribe

Blog

Braiding, pt. 1: The question

 2016-06-29 
Since Electromagnetic Field 2014, I have been slowly making progress on a recreational math problem about braiding. In this blog post, I will show you the type of braid I am interested in and present the problem.

Making an (8,3) braid

To make what I will later refer to as an (8,3) braid, you will need:
First, cut an octagon from the cardboard. The easiest way to do this is to start with a rectangle, then cut its corners off.
Next, use the pencil to punch a hole in the middle of your octagon and cut a small slit in each face of the octagon.
Now, tie the ends of your wool together, and put them through the hole. pull each strand of wool into one of the slits.
Now you are ready to make a braid. Starting from the empty slit, count around to the third strand of will. Pull this out of its slit then into the empty slit. Then repeat this starting at the newly empty slit each time. After a short time, a braid should form through the hole in the cardboard.

The problem

I call the braid you have just made the (8,3) braid, as there are 8 slits and you move the 3rd strand each time. After I first made on of these braid, I began to wonder what was special about 8 and 3 to make this braid work, and for what other numbers \(a\) and \(b\) the (\(a\),\(b\)) would work.
In my next blog post, I will give two conditions on \(a\) and \(b\) that cause the braid to fail. Before you read that, I recommend having a go at the problem yourself. To help you on your way, I am compiling a list of braids that are known to work or fail at mscroggs.co.uk/braiding. Good luck!

Similar posts

Electromagnetic Field talk
Braiding, pt. 2
Christmas cross stitch
Logical contradictions

Comments

Comments in green were written by me. Comments in blue were not written by me.
@no: yes, although rectangles work surprisingly well
Matthew
                 Reply
Would square cardboard work better than a rectangle
no
                 Reply
 Add a Comment 


I will only use your email address to reply to your comment (if a reply is needed).

Allowed HTML tags: <br> <a> <small> <b> <i> <s> <sup> <sub> <u> <spoiler> <ul> <ol> <li>
To prove you are not a spam bot, please type "meroeht" backwards in the box below (case sensitive):

Archive

Show me a random blog post
 2020 

May 2020

A surprising fact about quadrilaterals
Interesting tautologies

Mar 2020

Log-scaled axes

Feb 2020

PhD thesis, chapter ∞
PhD thesis, chapter 5
PhD thesis, chapter 4
PhD thesis, chapter 3
Inverting a matrix
PhD thesis, chapter 2

Jan 2020

PhD thesis, chapter 1
Gaussian elimination
Matrix multiplication
Christmas (2019) is over
 2019 
▼ show ▼
 2018 
▼ show ▼
 2017 
▼ show ▼
 2016 
▼ show ▼
 2015 
▼ show ▼
 2014 
▼ show ▼
 2013 
▼ show ▼
 2012 
▼ show ▼

Tags

tmip oeis statistics signorini conditions ternary quadrilaterals mathslogicbot trigonometry curvature gaussian elimination folding tube maps hats simultaneous equations hannah fry martin gardner matrix multiplication pac-man inline code triangles coins phd national lottery approximation game of life data menace arithmetic accuracy reuleaux polygons radio 4 finite element method interpolation raspberry pi inverse matrices noughts and crosses data visualisation graphs geometry braiding nine men's morris speed london underground chess python sport royal institution mathsjam logs reddit light frobel flexagons harriss spiral weak imposition football chebyshev bempp dates people maths gerry anderson hexapawn matrices preconditioning european cup cambridge wave scattering manchester science festival talking maths in public royal baby matrix of minors cross stitch dragon curves dataset numerical analysis golden spiral mathsteroids world cup sound probability platonic solids geogebra fractals misleading statistics folding paper propositional calculus wool matt parker boundary element methods squares puzzles rhombicuboctahedron realhats chalkdust magazine final fantasy games machine learning polynomials manchester exponential growth graph theory golden ratio tennis sobolev spaces matrix of cofactors binary christmas a gamut of games craft big internet math-off rugby news php logic asteroids christmas card electromagnetic field palindromes ucl programming pythagoras game show probability video games latex computational complexity error bars convergence draughts go the aperiodical determinants sorting captain scarlet pizza cutting bubble bobble map projections advent calendar twitter javascript countdown plastic ratio stickers bodmas estimation london weather station books

Archive

Show me a random blog post
▼ show ▼
© Matthew Scroggs 2012–2020