mscroggs.co.uk
mscroggs.co.uk

subscribe

Blog

Dragon curves

 2016-03-30 
Take a piece of paper. Fold it in half in the same direction many times. Now unfold it. What pattern will the folds make?
I first found this question in one of Martin Gardner's books. At first, you might that the answer will be simple, but if you look at the shapes made for a few folds, you will see otherwise:
Dragon curves of orders 1 to 6.
The curves formed are called dragon curves as they allegedly look like dragons with smoke rising from their nostrils. I'm not sure I see the resemblance:
An order 10 dragon curve.
As you increase the order of the curve (the number of times the paper was folded), the dragon curve squiggles across more of the plane, while never crossing itself. In fact, if the process was continued forever, an order infinity dragon curve would cover the whole plane, never crossing itself.
This is not the only way to cover a plane with dragon curves: the curves tessellate.
When tiled, this picture demonstrates how dragon curves tessellate. For a demonstration, try obtaining infinite lives...
Dragon curves of different orders can also fit together:

Drawing dragon curves

To generate digital dragon curves, first notice that an order \(n\) curve can be made from two order \(n-1\) curves:
This can easily be seen to be true if you consider folding paper: If you fold a strip of paper in half once, then \(n-1\) times, each half of the strip will have made an order \(n-1\) dragon curve. But the whole strip has been folded \(n\) times, so is an order \(n\) dragon curve.
Because of this, higher order dragons can be thought of as lots of lower order dragons tiled together. An the infinite dragon curve is actually equivalent to tiling the plane with a infinite number of dragons.
If you would like to create your own dragon curves, you can download the Python code I used to draw them from GitHub. If you are more of a thinker, then you might like to ponder what difference it would make if the folds used to make the dragon were in different directions.

Similar posts

Dragon curves II
PhD thesis, chapter 2
Visualising MENACE's learning
Harriss and other spirals

Comments

Comments in green were written by me. Comments in blue were not written by me.
 Add a Comment 


I will only use your email address to reply to your comment (if a reply is needed).

Allowed HTML tags: <br> <a> <small> <b> <i> <s> <sup> <sub> <u> <spoiler> <ul> <ol> <li>
To prove you are not a spam bot, please type "naidem" backwards in the box below (case sensitive):

Archive

Show me a random blog post
 2020 

Feb 2020

PhD thesis, chapter ∞
PhD thesis, chapter 5
PhD thesis, chapter 4
PhD thesis, chapter 3
Inverting a matrix
PhD thesis, chapter 2

Jan 2020

PhD thesis, chapter 1
Gaussian elimination
Matrix multiplication
Christmas (2019) is over
 2019 
▼ show ▼
 2018 
▼ show ▼
 2017 
▼ show ▼
 2016 
▼ show ▼
 2015 
▼ show ▼
 2014 
▼ show ▼
 2013 
▼ show ▼
 2012 
▼ show ▼

Tags

frobel gaussian elimination bempp ucl golden spiral people maths dragon curves chebyshev final fantasy pizza cutting folding paper chalkdust magazine menace logic christmas card probability countdown chess braiding boundary element methods asteroids error bars misleading statistics statistics determinants php the aperiodical trigonometry reuleaux polygons accuracy matrix of minors rugby sport hats matt parker reddit platonic solids go realhats geometry dates nine men's morris bubble bobble video games javascript mathslogicbot inline code game of life matrix multiplication game show probability phd craft wool oeis machine learning advent calendar pac-man signorini conditions binary martin gardner stickers mathsteroids cross stitch programming arithmetic gerry anderson propositional calculus royal baby pythagoras hexapawn hannah fry electromagnetic field sobolev spaces draughts puzzles world cup rhombicuboctahedron tmip graph theory royal institution finite element method european cup triangles mathsjam harriss spiral wave scattering interpolation books data a gamut of games folding tube maps map projections palindromes light fractals tennis matrix of cofactors curvature cambridge matrices captain scarlet preconditioning bodmas estimation polynomials weak imposition plastic ratio big internet math-off coins inverse matrices noughts and crosses simultaneous equations manchester golden ratio dataset python news approximation latex games twitter flexagons manchester science festival national lottery sorting talking maths in public football sound data visualisation london underground radio 4 weather station christmas computational complexity numerical analysis raspberry pi speed london ternary

Archive

Show me a random blog post
▼ show ▼
© Matthew Scroggs 2012–2020