mscroggs.co.uk
mscroggs.co.uk

subscribe

Blog

PhD thesis, chapter 5

 2020-02-16 
This is the fifth post in a series of posts about my PhD thesis.
In the fifth and final chapter of my thesis, we look at how boundary conditions can be weakly imposed on the Helmholtz equation.

Analysis

As in chapter 4, we must adapt the analysis of chapter 3 to apply to Helmholtz problems. The boundary operators for the Helmholtz equation satisfy less strong conditions than the operators for Laplace's equation (for Laplace's equation, the operators satisfy a condition called coercivity; for Helmholtz, the operators satisfy a weaker condition called Gårding's inequality), making proving results about Helmholtz problem harder.
After some work, we are able to prove an a priori error bound (with \(a=\tfrac32\) for the spaces we use):
$$\left\|u-u_h\right\|\leqslant ch^{a}\left\|u\right\|$$

Numerical results

As in the previous chapters, we use Bempp to show that computations with this method match the theory.
The error of our approximate solutions of a Dirichlet (left) and mixed Dirichlet–Neumann problems in the exterior of a sphere with meshes with different values of \(h\). The dashed lines show order \(\tfrac32\) convergence.

Wave scattering

Boundary element methods are often used to solve Helmholtz wave scattering problems. These are problems in which a sound wave is travelling though a medium (eg the air), then hits an object: you want to know what the sound wave that scatters off the object looks like.
If there are multiple objects that the wave is scattering off, the boundary element method formulation can get quite complicated. When using weak imposition, the formulation is simpler: this one advantage of this method.
The following diagram shows a sound wave scattering off a mixure of sound-hard and sound-soft spheres. Sound-hard objects reflect sound well, while sound-soft objects absorb it well.
A sound wave scattering off a mixture of sound-hard (white) and sound-soft (black) spheres.
If you are trying to design something with particular properties—for example, a barrier that absorbs sound—you may want to solve lots of wave scattering problems on an object on some objects with various values taken for their reflective properties. This type of problem is often called an inverse problem.
For this type of problem, weakly imposing boundary conditions has advantages: the discretisation of the Calderón projector can be reused for each problem, and only the terms due to the weakly imposed boundary conditions need to be recalculated. This is an advantages as the boundary condition terms are much less expensive (ie they use much less time and memory) to calculate than the Calderón term that is reused.

This concludes chapter 5, the final chapter of my thesis. Why not celebrate reaching the end by cracking open the following figure before reading the concluding blog post.
An acoustic wave scattering off a sound-hard champagne bottle and a sound-soft cork.
Previous post in series
This is the fifth post in a series of posts about my PhD thesis.
Next post in series
                        
(Click on one of these icons to react to this blog post)

You might also enjoy...

Comments

Comments in green were written by me. Comments in blue were not written by me.
 Add a Comment 


I will only use your email address to reply to your comment (if a reply is needed).

Allowed HTML tags: <br> <a> <small> <b> <i> <s> <sup> <sub> <u> <spoiler> <ul> <ol> <li> <logo>
To prove you are not a spam bot, please type "u" then "n" then "c" then "o" then "u" then "n" then "t" then "a" then "b" then "l" then "e" in the box below (case sensitive):

Archive

Show me a random blog post
 2024 

Feb 2024

Zines, pt. 2

Jan 2024

Christmas (2023) is over
 2023 
▼ show ▼
 2022 
▼ show ▼
 2021 
▼ show ▼
 2020 
▼ show ▼
 2019 
▼ show ▼
 2018 
▼ show ▼
 2017 
▼ show ▼
 2016 
▼ show ▼
 2015 
▼ show ▼
 2014 
▼ show ▼
 2013 
▼ show ▼
 2012 
▼ show ▼

Tags

graph theory hats pac-man crochet tmip gaussian elimination matrix of cofactors braiding squares hexapawn geogebra pizza cutting raspberry pi craft turtles matrices live stream matt parker bubble bobble chebyshev noughts and crosses pythagoras arithmetic reddit sport books ucl fence posts databet rhombicuboctahedron probability correlation gather town the aperiodical inverse matrices game show probability bodmas logic zines misleading statistics programming numbers graphs cambridge interpolation london talking maths in public golden spiral weak imposition 24 hour maths flexagons captain scarlet matrix multiplication fonts sobolev spaces trigonometry royal institution quadrilaterals php anscombe's quartet approximation london underground gerry anderson advent calendar rugby world cup dates mathslogicbot pascal's triangle logs palindromes cross stitch mean triangles platonic solids video games radio 4 game of life boundary element methods coins data visualisation recursion ternary national lottery electromagnetic field signorini conditions finite group manchester draughts propositional calculus datasaurus dozen error bars golden ratio statistics reuleaux polygons nine men's morris royal baby dragon curves plastic ratio fractals python christmas mathsjam final fantasy errors folding tube maps standard deviation wave scattering manchester science festival simultaneous equations geometry determinants map projections stickers mathsteroids machine learning matrix of minors wool go oeis european cup pi inline code menace computational complexity tennis harriss spiral martin gardner youtube realhats light people maths puzzles pi approximation day sound bempp folding paper games binary phd finite element method asteroids accuracy weather station sorting runge's phenomenon javascript stirling numbers estimation countdown guest posts hyperbolic surfaces a gamut of games hannah fry big internet math-off speed christmas card latex crossnumber exponential growth polynomials preconditioning curvature dataset logo newcastle numerical analysis convergence chess data news dinosaurs frobel edinburgh football chalkdust magazine

Archive

Show me a random blog post
▼ show ▼
© Matthew Scroggs 2012–2024