mscroggs.co.uk
mscroggs.co.uk

subscribe

Blog

A 20,000-to-1 baby?

 2018-03-23 
This morning, I heard about Arnie Ellis on the Today programme. Arnie is the first baby boy to be born in his family in five generations, following ten girls. According to John Humphrys, there is a 20,000-to-1 chance of this happening. Pretty quickly, I started wondering where this number came from.
After a quick Google, I found that this news story had appeared in many of today's papers, including the Sun and the Daily Mail. They all featured this 20,000-to-1 figure, which according to The Sun originally came from Ladbrokes.

What is the chance of this happening?

If someone is having a child, the probability of it being a girl is 0.5. The probability of it being a boy is also 0.5. So the probaility of having ten girls followed by a boy is
$$\left(\tfrac12\right)^{10}\times\tfrac12=\frac1{2048}.$$
If all 11 children were siblings, then this would be the chance of this happening—and it's a long way off the 20,000-to-1. But in Arnie's case, the situation is different. Luckily in the Daily Mail article, there is an outline of Arnie's family tree.
Here, you can see that the ten girls are spread over five generations. So the question becomes: given a baby, what is the probability that the child is male and his most recently born ten relatives on their mother's side are all female?
Four of the ten relatives are certainly female—Arnie's mother, grandmother, great grandmother and great great grandmother are all definitely female. This only leaves six more relatives, so the probability of a baby being in Arnie's position is
$$\left(\tfrac12\right)^{6}\times\tfrac12=\frac1{128}.$$
This is now an awful lot lower than the 20,000-to-1 we were told. In fact, with around 700,000 births in the UK each year, we'd expect over 5,000 babies to be born in this situation every year. Maybe Arnie's not so rare after all.
This number is based on the assumption that the baby's last ten relatives are spread across five generations. But the probability will be different if the relatives are spread over a different number of generations. Calculating the probability for a baby with any arrangement of ancestors would require knowing the likelihood of each arrangement of relatives, which would require a lot of data that probably doesn't exist. But the actual anwer is probably not too far from 127-to-1.

Where did 20,000-to-1 come from?

This morning, I emailed Ladbrokes to see if they could shed any light on the 20,000-to-1 figure. They haven't got back to me yet. (Although they did accidentally CC me when sending the query on to someone who might know the answer, so I'm hopeful.) I'll update this post with an explanaation if I do hear back.
Until then, there is one possible explanation for the figure: we have looked at the probability that a baby will be in this situation, but we could instead have started at the top of the family tree and looked at the probability that Beryl's next ten decendents were girls followed by a boy. The probability of this happening will be lower, as there is a reasonable chance that Beryl could have no female children, or no children at all. Looking at the problem this way, there are more ways for the situation to not happen, so the probability of it happening is lower.
But working the actually probability out in this way would again require data about how many children are likely in each generation, and would be a complicated calculation. It seems unlikely that this is what Ladbrokes did. Let's hope they shed some light on it...
                        
(Click on one of these icons to react to this blog post)

You might also enjoy...

Comments

Comments in green were written by me. Comments in blue were not written by me.
@Steve Spivey: Nothing
Matthew
                 Reply
Any response from Ladbrokes yet?
Steve Spivey
                 Reply
 Add a Comment 


I will only use your email address to reply to your comment (if a reply is needed).

Allowed HTML tags: <br> <a> <small> <b> <i> <s> <sup> <sub> <u> <spoiler> <ul> <ol> <li> <logo>
To prove you are not a spam bot, please type "j" then "u" then "m" then "p" in the box below (case sensitive):

Archive

Show me a random blog post
 2024 

Feb 2024

Zines, pt. 2

Jan 2024

Christmas (2023) is over
 2023 
▼ show ▼
 2022 
▼ show ▼
 2021 
▼ show ▼
 2020 
▼ show ▼
 2019 
▼ show ▼
 2018 
▼ show ▼
 2017 
▼ show ▼
 2016 
▼ show ▼
 2015 
▼ show ▼
 2014 
▼ show ▼
 2013 
▼ show ▼
 2012 
▼ show ▼

Tags

gerry anderson preconditioning oeis golden ratio squares matrices javascript exponential growth propositional calculus graphs games rhombicuboctahedron crossnumber braiding finite element method inverse matrices turtles radio 4 edinburgh sport signorini conditions menace statistics light chalkdust magazine determinants sound world cup machine learning pi electromagnetic field folding tube maps data visualisation sorting php european cup triangles binary gather town advent calendar hexapawn databet zines final fantasy arithmetic pizza cutting numerical analysis puzzles pascal's triangle mathslogicbot bodmas geometry draughts ucl data dates programming logic palindromes countdown plastic ratio people maths hyperbolic surfaces game show probability weak imposition quadrilaterals runge's phenomenon football inline code ternary flexagons pi approximation day logs phd tmip pythagoras manchester science festival asteroids stickers logo bempp mean the aperiodical video games rugby boundary element methods sobolev spaces christmas chess mathsjam estimation anscombe's quartet graph theory noughts and crosses reddit probability matt parker standard deviation error bars books misleading statistics royal institution fence posts 24 hour maths golden spiral finite group news weather station manchester cambridge correlation matrix multiplication royal baby pac-man matrix of cofactors talking maths in public chebyshev nine men's morris computational complexity matrix of minors mathsteroids captain scarlet go approximation wave scattering london underground errors python latex newcastle geogebra dataset youtube convergence simultaneous equations curvature craft frobel live stream tennis fractals accuracy hats game of life trigonometry christmas card cross stitch a gamut of games coins speed folding paper map projections datasaurus dozen gaussian elimination crochet martin gardner recursion polynomials national lottery realhats interpolation london guest posts platonic solids wool fonts big internet math-off raspberry pi bubble bobble numbers hannah fry harriss spiral reuleaux polygons dinosaurs dragon curves stirling numbers

Archive

Show me a random blog post
▼ show ▼
© Matthew Scroggs 2012–2024