mscroggs.co.uk
mscroggs.co.uk

subscribe

Blog

 2018-09-13 
This is a post I wrote for round 2 of The Aperiodical's Big Internet Math-Off 2018. As I went out in round 1 of the Big Math-Off, you got to read about the real projective plane instead of this.
Polynomials are very nice functions: they're easy to integrate and differentiate, it's quick to calculate their value at points, and they're generally friendly to deal with. Because of this, it can often be useful to find a polynomial that closely approximates a more complicated function.
Imagine a function defined for \(x\) between -1 and 1. Pick \(n-1\) points that lie on the function. There is a unique degree \(n\) polynomial (a polynomial whose highest power of \(x\) is \(x^n\)) that passes through these points. This polynomial is called an interpolating polynomial, and it sounds like it ought to be a pretty good approximation of the function.
So let's try taking points on a function at equally spaced values of \(x\), and try to approximate the function:
$$f(x)=\frac1{1+25x^2}$$
Polynomial interpolations of \(\displaystyle f(x)=\frac1{1+25x^2}\) using equally spaced points
I'm sure you'll agree that these approximations are pretty terrible, and they get worse as more points are added. The high error towards 1 and -1 is called Runge's phenomenon, and was discovered in 1901 by Carl David Tolmé Runge.
All hope of finding a good polynomial approximation is not lost, however: by choosing the points more carefully, it's possible to avoid Runge's phenomenon. Chebyshev points (named after Pafnuty Chebyshev) are defined by taking the \(x\) co-ordinate of equally spaced points on a circle.
Eight Chebyshev points
The following GIF shows interpolating polynomials of the same function as before using Chebyshev points.
Nice, we've found a polynomial that closely approximates the function... But I guess you're now wondering how well the Chebyshev interpolation will approximate other functions. To find out, let's try it out on the votes over time of my first round Big Internet Math-Off match.
Scroggs vs Parker, 6-8 July 2018
The graphs below show the results of the match over time interpolated using 16 uniform points (left) and 16 Chebyshev points (right). You can see that the uniform interpolation is all over the place, but the Chebyshev interpolation is very close the the actual results.
Scroggs vs Parker, 6-8 July 2018, approximated using uniform points (left) and Chebyshev points (right)
But maybe you still want to see how good Chebyshev interpolation is for a function of your choice... To help you find out, I've written @RungeBot, a Twitter bot that can compare interpolations with equispaced and Chebyshev points. Just tweet it a function, and it'll show you how bad Runge's phenomenon is for that function, and how much better Chebysheb points are.
A list of constants and functions that RungeBot understands can be found here.

Similar posts

Big Internet Math-Off stickers 2019
Mathsteroids
realhats
PhD thesis, chapter ∞

Comments

Comments in green were written by me. Comments in blue were not written by me.
 Add a Comment 


I will only use your email address to reply to your comment (if a reply is needed).

Allowed HTML tags: <br> <a> <small> <b> <i> <s> <sup> <sub> <u> <spoiler> <ul> <ol> <li>
To prove you are not a spam bot, please type "rotcaf" backwards in the box below (case sensitive):

Archive

Show me a random blog post
 2020 

Feb 2020

PhD thesis, chapter ∞
PhD thesis, chapter 5
PhD thesis, chapter 4
PhD thesis, chapter 3
Inverting a matrix
PhD thesis, chapter 2

Jan 2020

PhD thesis, chapter 1
Gaussian elimination
Matrix multiplication
Christmas (2019) is over
 2019 
▼ show ▼
 2018 
▼ show ▼
 2017 
▼ show ▼
 2016 
▼ show ▼
 2015 
▼ show ▼
 2014 
▼ show ▼
 2013 
▼ show ▼
 2012 
▼ show ▼

Tags

rhombicuboctahedron national lottery phd estimation propositional calculus ternary reuleaux polygons video games realhats matrix of minors ucl computational complexity world cup craft draughts wave scattering inverse matrices accuracy preconditioning advent calendar tennis dragon curves menace weak imposition asteroids a gamut of games harriss spiral tmip news cross stitch stickers raspberry pi palindromes folding tube maps electromagnetic field noughts and crosses mathsteroids machine learning pythagoras matrix multiplication pizza cutting folding paper inline code dates london underground map projections martin gardner nine men's morris royal baby mathslogicbot hats coins go triangles golden ratio football matrices arithmetic london big internet math-off fractals chess matrix of cofactors dataset twitter oeis flexagons weather station rugby cambridge boundary element methods numerical analysis talking maths in public sport christmas card trigonometry golden spiral final fantasy signorini conditions manchester people maths light hannah fry gerry anderson matt parker latex determinants logic php wool approximation javascript interpolation sorting polynomials games misleading statistics probability the aperiodical books gaussian elimination sound frobel data visualisation bodmas chebyshev radio 4 captain scarlet puzzles plastic ratio reddit mathsjam european cup curvature statistics programming manchester science festival royal institution game of life error bars bempp christmas graph theory data simultaneous equations platonic solids geometry python finite element method countdown binary speed game show probability braiding hexapawn sobolev spaces bubble bobble chalkdust magazine pac-man

Archive

Show me a random blog post
▼ show ▼
© Matthew Scroggs 2012–2020