mscroggs.co.uk
mscroggs.co.uk

subscribe

Blog

Tube map Platonic solids

 2012-10-06 
This is the first post in a series of posts about tube map folding.
This week, after re-reading chapter two of Alex's Adventures in Numberland (where Alex learns to fold business cards into tetrahedrons, cubes and octahedrons) on the tube, I folded two tube maps into a tetrahedron:
Following this, I folded a cube, an octahedron and an icosahedron:
The tetrahedron, icosahedron and octahedron were all made in the same way, as seen in Numberland: folding the map in two, so that a pair of opposite corners meet, then folding the sides over to make a triangle:
In order to get an equilateral triangle at this point, paper with sides in a ratio of 1:√3 is required. Although it is not exact, the proportions of a tube map are close enough to this to get an almost equilateral triangle. Putting one of these pieces together with a mirror image piece (one where the other two corners were folded together at the start) gives a tetrahedron. The larger solids are obtained by using a larger number of maps.
The cube—also found in Numberland—can me made by placing two tube maps on each other at right angles and folding over the extra length:
Six of these pieces combine to give a cube.
Finally this morning, with a little help from the internet, I folded a dodecahedron, thus completing all the Platonic solids:
To spread the joy of folding tube maps, each time I take the tube, I am going to fold a tetrahedron from two maps and leave it on the maps when I leave the tube. I started this yesterday, leaving a tetrahedron on the maps at South Harrow. In the evening, it was still there:
Do you think it will still be there on Monday morning? How often do you think I will return to find a tetrahedron still there? I will be keeping a tetrahedron diary so we can find out the answers to these most important questions...
This is the first post in a series of posts about tube map folding.
Next post in series
Tube map Platonic solids, pt. 2

Similar posts

Tube map Platonic solids, pt. 3
Tube map Platonic solids, pt. 2
Tube map kaleidocycles
Tube map stellated rhombicuboctahedron

Comments

Comments in green were written by me. Comments in blue were not written by me.
New test comment please ignore
Matthew
×1   ×1   ×1   ×2   ×1     Reply
Test comment please ignore
Matthew
×1   ×1   ×1   ×2   ×1     Reply
 Add a Comment 


I will only use your email address to reply to your comment (if a reply is needed).

Allowed HTML tags: <br> <a> <small> <b> <i> <s> <sup> <sub> <u> <spoiler> <ul> <ol> <li>
To prove you are not a spam bot, please type "ratio" in the box below (case sensitive):

Archive

Show me a random blog post
 2020 

Mar 2020

Log-scaled axes

Feb 2020

PhD thesis, chapter ∞
PhD thesis, chapter 5
PhD thesis, chapter 4
PhD thesis, chapter 3
Inverting a matrix
PhD thesis, chapter 2

Jan 2020

PhD thesis, chapter 1
Gaussian elimination
Matrix multiplication
Christmas (2019) is over
 2019 
▼ show ▼
 2018 
▼ show ▼
 2017 
▼ show ▼
 2016 
▼ show ▼
 2015 
▼ show ▼
 2014 
▼ show ▼
 2013 
▼ show ▼
 2012 
▼ show ▼

Tags

national lottery python video games geometry european cup radio 4 programming puzzles wool london wave scattering books sport go simultaneous equations hats pizza cutting inline code pac-man estimation gaussian elimination dataset accuracy logs coins error bars matrices misleading statistics realhats bubble bobble stickers folding tube maps golden spiral craft data visualisation dragon curves nine men's morris draughts php speed matrix multiplication sound inverse matrices tennis talking maths in public platonic solids weak imposition christmas card approximation golden ratio chalkdust magazine preconditioning games polynomials sobolev spaces game show probability matrix of cofactors christmas binary news dates map projections captain scarlet machine learning sorting light chebyshev london underground latex ucl graph theory braiding curvature electromagnetic field ternary a gamut of games advent calendar matrix of minors game of life hannah fry royal institution football folding paper the aperiodical gerry anderson twitter reddit hexapawn oeis finite element method logic probability countdown mathsteroids data final fantasy big internet math-off menace tmip signorini conditions phd flexagons rugby noughts and crosses bodmas statistics manchester science festival raspberry pi martin gardner javascript arithmetic world cup exponential growth numerical analysis determinants triangles cambridge interpolation convergence graphs pythagoras cross stitch reuleaux polygons bempp rhombicuboctahedron asteroids people maths computational complexity frobel matt parker boundary element methods plastic ratio palindromes harriss spiral chess manchester propositional calculus mathsjam fractals trigonometry royal baby weather station mathslogicbot

Archive

Show me a random blog post
▼ show ▼
© Matthew Scroggs 2012–2020