# Puzzles

## Archive

Show me a random puzzle**Most recent collections**

#### Sunday Afternoon Maths LXVII

Coloured weightsNot Roman numerals

#### Advent calendar 2018

#### Sunday Afternoon Maths LXVI

Cryptic crossnumber #2#### Sunday Afternoon Maths LXV

Cryptic crossnumber #1Breaking Chocolate

Square and cube endings

List of all puzzles

## Tags

3d shapes mean colouring chalkdust crossnumber remainders chocolate circles unit fractions parabolas functions integers arrows cryptic clues menace dates people maths integration regular shapes sum to infinity lines dodecagons hexagons probabilty calculus probability volume factors area logic irreducible numbers surds percentages balancing algebra proportion indices triangles sums coins crosswords factorials time doubling squares number floors partitions palindromes complex numbers numbers square roots sport multiplication pascal's triangle triangle numbers advent cube numbers prime numbers crossnumbers star numbers rugby square numbers shape differentiation angles bases chess division ellipses sequences fractions clocks addition odd numbers speed cryptic crossnumbers spheres ave perfect numbers dice polygons taxicab geometry money books folding tube maps shapes averages means digits symmetry coordinates perimeter christmas multiples wordplay quadratics trigonometry cards rectangles geometry scales 2d shapes routes grids graphs games planes## 6 December

\(p(x)\) is a quadratic with real coefficients. For all real numbers \(x\),

$$x^2+4x+14\leq p(x)\leq 2x^2+8x+18$$
\(p(2)=34\). What is \(p(6)\)?

## Between quadratics

Source: Luciano Rila (@DrTrapezio)

\(p(x)\) is a quadratic polynomial with real coefficients. For all real numbers \(x\),

$$x^2-2x+2\leq p(x)\leq 2x^2-4x+3$$
\(p(11)=181\). Find \(p(16)\).

## Bézier curve

A Bézier curve is created as follows:

1) A set of points \(P_0\), ..., \(P_n\) are chosen (in the example \(n=4\)).

2) A set of points \(Q_0\), ..., \(Q_{n-1}\) are defined by \(Q_i=t P_{i+1}+(1-t) P_i\) (shown in green).

3) A set of points \(R_0\), ..., \(R_{n-2}\) are defined by \(R_i=t Q_{i+1}+(1-t) Q_i\) (shown in blue).

.

.

.

\(n\)) After repeating the process \(n\) times, there will be one point. The Bézier curve is the path traced by this point at \(t\) varies between 0 and 1.

What is the Cartesian equation of the curve formed when:

$$P_0=\left(0,1\right)$$
$$P_1=\left(0,0\right)$$
$$P_2=\left(1,0\right)$$## Parabola

Source:

*Alex Through the Looking-Glass: How Life Reflects Numbers and Numbers Reflect Life*by Alex BellosOn a graph of \(y=x^2\), two lines are drawn at \(x=a\) and \(x=-b\) (for \(a,b>0\). The points where these lines intersect the parabola are connected.

What is the y-coordinate of the point where this line intersects the y-axis?

## Two lines

Let A and B be two straight lines such that the gradient of A is the y-intercept of B and the y-intercept of A is the gradient of B (the gradient and y-intercept of A are not the same). What are the co-ordinates of the point where the lines meet?

**
**

**© Matthew Scroggs 2019**