mscroggs.co.uk
mscroggs.co.uk

subscribe

Puzzles

Archive

Show me a Random Puzzle
 Most Recent Collections 

Tags

time geometry 2d shapes 3d shapes numbers spheres trigonometry complex numbers algebra lines graphs coordinates odd numbers fractions differentiation calculus folding tube maps ellipses triangle numbers money bases triangles squares area square numbers chess probability circles averages speed sport multiples dates factors parabolas functions logic cards games people maths shape prime numbers irreducible numbers probabilty angles proportion dice integration sum to infinity dodecagons hexagons multiplication factorials coins shapes regular shapes colouring grids floors integers rugby crosswords percentages digits sums christmas rectangles clocks menace routes taxicab geometry remainders chalkdust crossnumber palindromes sequences means unit fractions division square roots surds doubling quadratics indices planes volume number partitions ave pascal's triangle mean advent symmetry arrows addition cube numbers star numbers perfect numbers

Archive

Show me a Random Puzzle
▼ show ▼

24 December

Today's number is the smallest number with exactly 28 factors (including 1 and the number itself as factors).

Show Answer

21 December

The factors of 6 (excluding 6 itself) are 1, 2 and 3. \(1+2+3=6\), so 6 is a perfect number.
Today's number is the only three digit perfect number.

20 December

What is the largest number that cannot be written in the form \(10a+27b\), where \(a\) and \(b\) are nonnegative integers (ie \(a\) and \(b\) can be 0, 1, 2, 3, ...)?

Show Answer & Extension

Elastic Numbers

Throughout this puzzle, expressions like \(AB\) will represent the digits of a number, not \(A\) multiplied by \(B\).
A two-digit number \(AB\) is called elastic if:
  1. \(A\) and \(B\) are both non-zero.
  2. The numbers \(A0B\), \(A00B\), \(A000B\), ... are all divisible by \(AB\).
There are three elastic numbers. Can you find them?

Show Answer & Extension

16 December

Put the digits 1 to 9 (using each digit exactly once) in the boxes so that the sums are correct. The sums should be read left to right and top to bottom ignoring the usual order of operations. For example, 4+3×2 is 14, not 10. Today's number is the largest number than can be made from the digits in red boxes.
××= 6
× × ×
××= 180
× × ×
××= 336
=
32
=
70
=
162

14 December

In July, I posted the Combining Multiples puzzle.
Today's number is the largest number that cannot be written in the form \(27a+17b\), where \(a\) and \(b\) are positive integers (or 0).

8 December

Today's number is the second smallest number that can be written as a×b×c×d×e×f×g×h×i, where a,b,...,i are all integers greater than 1.

5 December

Today's number is the number of ways that 35 can be written as the sum of distinct numbers, with none of the numbers in the sum being divisible by 9.
Clarification: By "numbers", I mean (strictly) positive integers. The sum of the same numbers in a different order is counted as the same sum: eg. 1+34 and 34+1 are not different sums. The trivial sum consisting of just the number 35 counts as a sum.
© Matthew Scroggs 2018