# Puzzles

## Archive

Show me a random puzzle**Most recent collections**

#### Advent calendar 2018

#### Sunday Afternoon Maths LXVI

Cryptic crossnumber #2#### Sunday Afternoon Maths LXV

Cryptic crossnumber #1Breaking Chocolate

Square and cube endings

#### Sunday Afternoon Maths LXIV

Equal lengthsDigitless factor

Backwards fours

List of all puzzles

## Tags

time geometry 2d shapes 3d shapes numbers spheres trigonometry complex numbers algebra lines graphs coordinates odd numbers fractions differentiation calculus folding tube maps ellipses triangle numbers money bases triangles squares area square numbers chess probability circles averages speed sport multiples dates factors parabolas functions logic cards games people maths shape prime numbers irreducible numbers probabilty angles proportion dice integration sum to infinity dodecagons hexagons multiplication factorials coins shapes regular shapes colouring grids floors integers rugby crosswords percentages digits sums christmas square roots surds doubling quadratics indices symmetry arrows addition cube numbers star numbers rectangles chocolate cryptic clues cryptic crossnumbers crossnumbers wordplay clocks menace routes taxicab geometry remainders chalkdust crossnumber palindromes sequences means unit fractions division planes volume number partitions ave pascal's triangle mean advent perfect numbers polygons books perimeter## 11 December

This puzzle is inspired by a puzzle Woody showed me at MathsJam.

Today's number is the number \(n\) such that $$\frac{216!\times215!\times214!\times...\times1!}{n!}$$ is a square number.

## 4 December

Today's number is the number of 0s that 611! (611×610×...×2×1) ends in.

## 10 December

How many zeros does 1000! (ie 1000 × 999 × 998 × ... × 1) end with?

## Factorial pattern

$$1\times1!=2!-1$$ $$1\times1!+2\times2!=3!-1$$ $$1\times1!+2\times2!+3\times3!=4!-1$$Does this pattern continue?

## Square factorials

Source: Woody at Maths Jam

Multiply together the first 100 factorials:

$$1!\times2!\times3!\times...\times100!$$
Find a number, \(n\), such that dividing this product by \(n!\) produces a square number.

## 17 December

In March, I posted the puzzle One Hundred Factorial, which asked how many zeros 100! ends with.

What is the smallest number, n, such that n! ends with 50 zeros?