# Puzzles

## Archive

Show me a Random Puzzle**Most Recent Collections**

#### Advent Calendar 2017

#### Sunday Afternoon Maths LXII

What's the Star?#### Sunday Afternoon Maths LXI

XYZ#### Sunday Afternoon Maths LX

Where is Evariste?Bending a Straw

List of All Puzzles

## Tags

time geometry 2d shapes 3d shapes numbers spheres trigonometry complex numbers algebra lines graphs coordinates odd numbers fractions differentiation calculus folding tube maps ellipses triangle numbers money bases triangles squares area square numbers chess probability circles averages speed sport multiples dates factors parabolas functions logic cards games people maths shape prime numbers irreducible numbers probabilty angles proportion dice integration sum to infinity dodecagons hexagons multiplication factorials coins shapes regular shapes colouring grids floors integers rugby crosswords percentages digits sums christmas rectangles clocks menace routes taxicab geometry remainders chalkdust crossnumber palindromes sequences means unit fractions division square roots surds doubling quadratics indices planes volume number partitions ave pascal's triangle mean advent symmetry arrows addition cube numbers star numbers perfect numbers## 10 December

How many zeros does 1000! (ie 1000 × 999 × 998 × ... × 1) end with?

## Factorial Pattern

$$1\times1!=2!-1$$ $$1\times1!+2\times2!=3!-1$$ $$1\times1!+2\times2!+3\times3!=4!-1$$Does this pattern continue?

## Square Factorials

Source: Woody at Maths Jam

Multiply together the first 100 factorials:

$$1!\times2!\times3!\times...\times100!$$
Find a number, \(n\), such that dividing this product by \(n!\) produces a square number.

## 17 December

In March, I posted the puzzle One Hundred Factorial, which asked how many zeros 100! ends with.

What is the smallest number, n, such that n! ends with 50 zeros?