# Puzzles

## Archive

Show me a random puzzle**Most recent collections**

#### Advent calendar 2018

#### Sunday Afternoon Maths LXVI

Cryptic crossnumber #2#### Sunday Afternoon Maths LXV

Cryptic crossnumber #1Breaking Chocolate

Square and cube endings

#### Sunday Afternoon Maths LXIV

Equal lengthsDigitless factor

Backwards fours

List of all puzzles

## Tags

time geometry 2d shapes 3d shapes numbers spheres trigonometry complex numbers algebra lines graphs coordinates odd numbers fractions differentiation calculus folding tube maps ellipses triangle numbers money bases triangles squares area square numbers chess probability circles averages speed sport multiples dates factors parabolas functions logic cards games people maths shape prime numbers irreducible numbers probabilty angles proportion dice integration sum to infinity dodecagons hexagons multiplication factorials coins shapes regular shapes colouring grids floors integers rugby crosswords percentages digits sums christmas square roots surds doubling quadratics indices symmetry arrows addition cube numbers star numbers rectangles chocolate cryptic clues cryptic crossnumbers crossnumbers wordplay clocks menace routes taxicab geometry remainders chalkdust crossnumber palindromes sequences means unit fractions division planes volume number partitions ave pascal's triangle mean advent perfect numbers polygons books perimeter## Turning squares

Source: Futility Closet

Each square on a chessboard contains an arrow point up, down, left or right. You start in the bottom left square. Every second you move one square in the direction shown by the arrow in your square. Just after you move, the arrow on the square you moved from rotates 90° clockwise. If an arrow would take you off the edge of the board, you stay in that square (the arrow will still rotate).

You win the game if you reach the top right square of the chessboard. Can I design a starting arrangement of arrows that will prevent you from winning?

## The mutilated chessboard

You are given a chessboard where two diagonally opposite corners have been removed and a large bag of dominoes of such size that they exactly cover two adjacent squares on the chessboard.

Is it possible to place 31 dominoes on the chessboard so that all the squares are covered? If yes, how? If no, why not?

## Chessboard squares

It was once claimed that there are 204 squares on a chessboard. Can you justify this claim?