Advent calendar 2017

6 December

\(p(x)\) is a quadratic with real coefficients. For all real numbers \(x\),
$$x^2+4x+14\leq p(x)\leq 2x^2+8x+18$$
\(p(2)=34\). What is \(p(6)\)?


Show me a random puzzle
 Most recent collections 

Advent calendar 2019

Sunday Afternoon Maths LXVII

Coloured weights
Not Roman numerals

Advent calendar 2018

Sunday Afternoon Maths LXVI

Cryptic crossnumber #2

List of all puzzles


sum to infinity symmetry bases dates coordinates cryptic crossnumbers sequences averages area rugby percentages dodecagons algebra arrows differentiation spheres factors integration books complex numbers cube numbers cryptic clues means probability sums taxicab geometry games factorials volume probabilty lines sport partitions clocks shape floors coins dominos elections people maths chess 3d shapes ave calculus crossnumbers functions multiplication prime numbers cards surds numbers balancing products polygons digital clocks multiples square roots time rectangles the only crossnumber median chalkdust crossnumber odd numbers logic parabolas money star numbers number colouring mean doubling triangle numbers angles ellipses crossnumber tiling division range crosswords quadratics triangles shapes indices gerrymandering hexagons 2d shapes dice digits graphs chocolate wordplay speed integers menace scales routes proportion irreducible numbers pascal's triangle grids christmas addition palindromes perfect numbers squares square numbers remainders folding tube maps planes fractions geometry circles trigonometry unit fractions regular shapes advent perimeter


Show me a random puzzle
▼ show ▼
© Matthew Scroggs 2012–2020