PHASO0102: Techniques of
High-Performance Computing

We’'ll start at about 10:05 to give people time to join

Feedback

[=]

menti.com/al3gqxshz4ppy
(I will post this in chat)

[=]

[=].

Finite differences

%N Y1 — Yo
dr x1 — 29

Simultaneous

Differential equations /

— .
equations matrix-vector

problems

Time dependent problems

dy -~ y(t1) — y(to)
dt t1 — to

dy _ y(t+At) —y(t)

Forward Euler

dt At
Backward Euler % ~ y(t) . y(t - At)
dt At

dy _ y(t+ At) —y(t — At)

Y

d? YAN

Forward Euler

dy - y(t + At) — y(t)
dt At

dy _

dt — f(y,1) —— y(t + At) = y(t) + At f(y(1), 1)

Yn+1 = Yn + Atf(yn, t)

Backward Euler

dy _ y() —y(t = AY)
dt At

dy _

- = W t) —— y(t+ At) = y(t) + At f(y(t + At),2)

Yn+1 = Yn T At f(yn_|_1, t)

Forward Euler

Yn+1 = YUn =+ Atf(y’nnt)

(Usually) easy to solve
Explicit
Less stable

Backward Euler

Yn+1 = Yn + At f(Yn+1,t)

Harder to solve
Implicit
More stable

Finite elements

A more powerful method for turning PDEs into
matrix-vector problems.

Finite elements

1. Write differential equation in variational form

—Au = [= Find u € V such that

/VU-VU:/vf (for all v € V)

2. Pick a finite dimensional subspace of V.

Functions that are continuous
> and polynomial of max degree

n on each square in the mesh

Finite elements

Turning the PDE into a matrix-vector problem is called
discretisation

The discretisation is done in such a way that leads to
sparse matrices.

Open source software

There is a lot of open source software for finite element methods. Most is
developed at universities. Eg:

* FEniCS (Cambridge, Luxembourg, Simula (Oslo), UCL, others)
* Firedrake (Imperial, Oxford, others)

e Deal.ll (Colorado State, others)

* Dune

* MFEM

There is a lot of research work currently taking place based on developing
fast FEM libraries and building new methods on top of them.

FEniCS

During my previous job in Cambridge, | was working
on developing FEniCS.

If you ever need to use a finite element solver in the
future, get in touch.

Domain decomposition

Many real world problems involve domain
decomposition, eg:

Air
Sound wav:els “

These kind of problems are possible to parallelise: get
one process to solve in the air and other in the concrete.

Space-time parallelisation

Problems involving time are harder to parallelise, as
the whole solution at the current time is needed
before starting on the next point in time.

Alternative method: make a 4D mesh (3D space and 1
time dimension) and solve at all times at once — this
can be parallelised much more effectively.

Solvers

Effective solvers for sparse matrices arising from FEM
is a big area of research:

* Multigrid and variants of multigrid

* Preconditioning

Randomised linear algebra

In some applications, randomised linear algebra can
be very effective.

eg picking some random vectors and multiplying
them with a matrix can be a fast way to approximate

eigenvalues.

Machine learning

* Huge matrices of data
— Matrix storage and compression

— Fast solvers

e Randomisation, trial and error

e Parallelisation

Some advice for the future

Keep programming
* The best way to become a better programmer is to
practice.

* Programming puzzles you can do to practice:
— Advent of Code

— Project Euler

Keep programming

* Learn more languages
— If you want to do fast computation: C++ or Rust

— If you want to do web development: Javascript or PHP

— If you want to work at Google: Go

* Once you've learned a couple of languages, picking
up more is very easy.

Reproducibility

* It is very important to do everything we can to
make scientific experiment reproducible

* Whenever you publish anything based on code:
— Make an archive of the current state of the code

— Make and archive a docker image in which you can run
the code

Embrace open source

* There are very few downside of making every piece of
code you write open source.

— Should I share my code? Chalkdust Magazine

(http://chalkd ustmagazine.com/featu res/o%cf%SOnions—should—i—share—my—code/)

* Learn git. Put any code you write on GitHub.

* Use other people’s code. If it doesn’t do quite what you
want, email them and help develop new features.

Two final pieces of advice

* Watch out for off-by-one errors

Thank you!

* Thanks for being great students. I've really enjoyed
working with you.

* If anyone would like to ask anything “on their way
out”, I'm going to drop into the Gather Town space for
the next 5 or so minutes (link on Moodle and in chat).

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24

