

PHAS0102: Techniques of
High-Performance Computing

We’ll start at about 10:05 to give people time to join

Feedback

menti.com/al3qxshz4ppy
(I will post this in chat)

Finite differences

Differential
equations

Simultaneous
equations /
matrix-vector
problems

Time dependent problems

Forward Euler

Backward Euler

Forward Euler

Backward Euler

Forward Euler Backward Euler

(Usually) easy to solve
Explicit
Less stable

Harder to solve
Implicit
More stable

Finite elements

A more powerful method for turning PDEs into
matrix-vector problems.

Finite elements

1. Write differential equation in variational form

2. Pick a finite dimensional subspace of V.

Functions that are continuous
and polynomial of max degree
n on each square in the mesh

Finite elements

Turning the PDE into a matrix-vector problem is called
discretisation

The discretisation is done in such a way that leads to
sparse matrices.

Open source software
There is a lot of open source software for finite element methods. Most is
developed at universities. Eg:
● FEniCS (Cambridge, Luxembourg, Simula (Oslo), UCL, others)
● Firedrake (Imperial, Oxford, others)
● Deal.II (Colorado State, others)
● Dune
● MFEM

There is a lot of research work currently taking place based on developing
fast FEM libraries and building new methods on top of them.

FEniCS

During my previous job in Cambridge, I was working
on developing FEniCS.

If you ever need to use a finite element solver in the
future, get in touch.

Domain decomposition
Many real world problems involve domain
decomposition, eg:

These kind of problems are possible to parallelise: get
one process to solve in the air and other in the concrete.

Air

Concrete
Sound waves

Space-time parallelisation
Problems involving time are harder to parallelise, as
the whole solution at the current time is needed
before starting on the next point in time.

Alternative method: make a 4D mesh (3D space and 1
time dimension) and solve at all times at once – this
can be parallelised much more effectively.

Solvers
Effective solvers for sparse matrices arising from FEM
is a big area of research:
● Multigrid and variants of multigrid
● Preconditioning

Randomised linear algebra
In some applications, randomised linear algebra can
be very effective.

eg picking some random vectors and multiplying
them with a matrix can be a fast way to approximate
eigenvalues.

Machine learning
● Huge matrices of data

– Matrix storage and compression
– Fast solvers

● Randomisation, trial and error
● Parallelisation

Some advice for the future

Keep programming
● The best way to become a better programmer is to

practice.
● Programming puzzles you can do to practice:

– Advent of Code
– Project Euler

Keep programming
● Learn more languages

– If you want to do fast computation: C++ or Rust
– If you want to do web development: Javascript or PHP
– If you want to work at Google: Go

● Once you’ve learned a couple of languages, picking
up more is very easy.

Reproducibility
● It is very important to do everything we can to

make scientific experiment reproducible
● Whenever you publish anything based on code:

– Make an archive of the current state of the code
– Make and archive a docker image in which you can run

the code

Embrace open source
● There are very few downside of making every piece of

code you write open source.
– Should I share my code? Chalkdust Magazine

(http://chalkdustmagazine.com/features/o%cf%80nions-should-i-share-my-code/)

● Learn git. Put any code you write on GitHub.
● Use other people’s code. If it doesn’t do quite what you

want, email them and help develop new features.

Two final pieces of advice
● Watch out for off-by-one errors

Thank you!
● Thanks for being great students. I’ve really enjoyed

working with you.

● If anyone would like to ask anything “on their way
out”, I’m going to drop into the Gather Town space for
the next 5 or so minutes (link on Moodle and in chat).

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24

