
  

PHAS0102: Techniques of
High-Performance Computing



  

Assignment 1
● On Moodle and mscroggs.co.uk/phas0102
● Reminder: 20% of the assessment for the course
● Deadline: Thursday 20 October 5pm



  

Column vectors vs row vectors
import numpy as np

a = np.array([1, 2, 3])
b = a.transpose()

b = np.array([[1], [2], [3]])

Numpy will interpret this as 
either a row vector or a 
column vector depending on 
the situation.



  

timeit
t = timeit(matvec(A, v), repeat=10)

    “Here’s a vector, how long does it take?”

def f():
    matvec(A, v)
t = timeit(f, repeat=10)

    “Here’s a function, how long does it take?”

t = timeit(lambda: matvec(A, v), repeat=10)

😀

😢

Do the same thing



  

Numba
● Just-in-time compilation

– Converts Python functions into fast compiled code 
when the function is first called



  

[live Numba demo]



  

What does Numba do?
● Detects information about your CPU then makes 

code that will run fast on your computer.
– SIMD
– Parallel for loops (with automatically detected number 

of processes)

● Numba can be configured if you don’t want to use 
the auto settings.



  

What can Numba not do?
● Many things Python can do:

– Pandas
– Lists with different types inside

● If you want to use Numba on something it can’t do, you can use 
@jit(nopython=False) to make it only partially compile a 
function.



  

Numexpr
● Numexpr can be used to do fast operations on 

Numpy arrays



  

[live Numexpr demo]



  

O
● A (mathematical) function is O(nk) if (for very large 
n) the function is less than ank.

● An algorithm is O(nk) if the number of operations is 
needs to be completed is O(nk).



  

O
result = 0
for i in range(n):
    for j in range(n):
        for k in range(n):
            result += A[i, j, k]

“This function is O(n3) because there are 3 for loops.”✓



  

O
result = 0
for i in range(n):
    result += A[i]
for j in range(n):
    result += B[j]

“This function is O(n2) because there are 2 for loops.”✗



  

O
result = 0
for i in range(n):
    for j in range(n):
        for k in range(2):
            result += A[i, j, k]

“This function is O(n3) because there are 3 for loops.”✗



  

O
result = 0
for i in range(n):
    for j in range(n):
        result += f(i, j)

“This function is O(n2) because there are 2 for loops.” ?



  

Example: matrix-matrix multiplication

Memory: n2 numbers in result → O(n2)

Number of operations: 
Each entry of the result needs n multiplications and n-1 additions
There are n2 entries
So overall, n2(2n-1) operations → O(n3)



  

Example: matrix-matrix multiplication
● There are algorithms for matrix-matrix 

multiplication that are faster than O(n3).
– In 1969, an O(n2.8074) algorithm was found
– In 2020, an O(n2.3728596) algorithms was found
– It is unknown what the optimal possible complexity is, 

but it is know that it’s between O(n2) and O(n2.3728596)



  

Memory-bound & compute-bound
● An algorithm is memory-bound if it is limited by 

how much memory it needs.
● An algorithm is compute-bound if it is limited by 

how many operations is needs to do.

● The status of an algorithm can depend on the hardware of 
a computer.


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18

