MATH6103 Differential & Integral Calculus MATH6500 Elementary Mathematics for Engineers

Problem Sheet 3

Deadline: Monday 24 October, 5:00.

Hand in to **the drop box** in the undergraduate common room (maths department, room 502).

Hand in the questions marked with an asterisk (*).

One mark will be deducted if you do not staple your work.

- 1) Differentiate the following functions:
- * a) $a(x) = x^2 \frac{1}{x^2}$ b) $b(x) = 4\sqrt{x}$ c) $c(x) = x^8 + \cos x$ * d) $d(x) = 359x^{17}$ e) $e(x) = \sin^2 x$ [Hint: chain rule] * f) $f(x) = \sin(x^2)$ [Hint: chain rule] * g) $g(x) = xe^x$ [Hint: product rule] h) $h(x) = (x+2)\sin x$ [Hint: product rule]

2) Differentiate the following functions:

* a) $i(x) = \cos(4 + 3x^2)$ b) $j(x) = x^2 \sin x$ c) $k(x) = \sin(e^x)$ * d) $l(x) = \cos(\sin x)$ e) $m(x) = 2^x$ f) $n(x) = e^x \sin x \cos x$ * g) $o(x) = \sqrt{\sin x + \cos x}$ h) $p(x) = (x^{10} - x^2 \sin x)^2$

3) Find the x co-ordinates of the turning points of the following:

a) $q(x) = e^{x^3 - 27x}$ * b) $s(x) = x^3 - 108x$ * c) $r(x) = x^3 + 3x^2 + 2x - 8$ * d) $t(x) = \sin x + \cos x, -\frac{\pi}{2} < x < \frac{\pi}{2}$

Challenge 1: Differentiate x^x

Challenge 2: Use the product and chain rules to show that:

$$\frac{d}{dx}\left(\frac{f(x)}{g(x)}\right) = \frac{f'(x)g(x) - f(x)g'(x)}{(g(x))^2}$$

[Hint: Use $\frac{f(x)}{g(x)} = f(x)(g(x))^{-1}$]