1.6 Trigonometric functions

1.6.1 Measuring angles

Definition: Degrees

Degrees are defined so that one full turn is 360° .

Definition: Radians

Radians (usually abbreviated as rad or $^{\rm c}$) are defined using a circle of radius 1. The angle between two radii in the unit circle in radians is equal to the arc length between the two radii.

We can see immediately that a full turn is 2π rad because a circle of radius 1 has a circumference 2π . Therefore we have

$$1 \operatorname{turn} = 360^{\circ} = 2\pi \operatorname{rad}$$
$$\frac{1}{2} \operatorname{turn} = 180^{\circ} = \pi \operatorname{rad}$$

So,

$$1 \operatorname{rad} = \frac{180}{\pi}^{\circ}$$
$$1^{\circ} = \frac{\pi}{180} \operatorname{rad}$$

If the radius is not 1, then you need to take the ratio

$$\frac{\text{arc length}}{\text{radius}} = \text{angle (in radians)}.$$
 (1.11)

1.6.2 Trignometric functions: cosine, sine & tangent

It can easily be seen that this definition is equivalent to the "SOH CAH TOA" definition you are familiar with:

$$\sin \theta = \frac{AC}{OC} = AC$$
$$\cos \theta = \frac{OA}{OC} = OA$$
$$\tan \theta = \frac{AC}{OA} = \frac{\sin \theta}{\cos \theta}$$

Although this definition allows for sin, cos and tan to easily be extended to angles outside the range $\left[0, \frac{\pi}{2}\right]$

1.6.3 Properties of sin, cos and tan

 Property

 $\cos^2 \theta + \sin^2 \theta = 1$

 Proof:
 Use Pythagoras' Theorem in triangle OAC.

Property

cos and sin are periodic functions with period 2π (i.e. for any x, $\cos(x+2\pi) = \cos x$, $\sin(x+2\pi) = \sin x$).

Property

 $\cos : \mathbb{R} \to [-1, 1]$ and $\sin : \mathbb{R} \to [-1, 1]$.

Figure 1.7: Graph of $\cos \theta$.

Figure 1.8: Graph of $\sin \theta$.

Property

cos is an even function. sin is an odd function.

Property

cos and sin are the same shape but shifted by $\pi/2$, which means

$$\cos\left(\theta - \frac{\pi}{2}\right) = \sin\theta$$
$$\sin\left(\theta + \frac{\pi}{2}\right) = \cos\theta$$

Property: Addition formulae

$$\cos(\theta + \phi) = \cos\theta\cos\phi - \sin\theta\sin\phi$$
$$\sin(\theta + \phi) = \sin\theta\cos\phi + \cos\theta\sin\phi$$

Property: Double angle formulae

 $\sin 2\theta = 2\sin\theta\cos\theta$ $\cos 2\theta = 1 - 2\sin^2\theta$ $\cos 2\theta = 2\cos^2\theta - 1$

Proof:

$$\cos 2\theta = \cos(\theta + \theta)$$

= $\cos^2 \theta - \sin^2 \theta$
= $\cos^2 \theta - (1 - \cos^2 \theta)$
= $2\cos^2 \theta - 1$
= $1 - 2\sin^2 \theta$
$$\sin 2\theta = \sin(\theta + \theta)$$

= $2\sin \theta \cos \theta$

Property: Half angle formulae

$$\cos^{2}\left(\frac{\alpha}{2}\right) = \frac{1+\cos\alpha}{2}$$

$$\sin^{2}\left(\frac{\alpha}{2}\right) = \frac{1-\cos\alpha}{2}$$
Proof: Let $2\theta = \alpha$, then

$$\cos\alpha = 2\cos^{2}\left(\frac{\alpha}{2}\right) - 1 \implies \cos^{2}\left(\frac{\alpha}{2}\right) = \frac{1+\cos\alpha}{2}$$

$$\cos\alpha = 1 - 2\sin^{2}\left(\frac{\alpha}{2}\right) \implies \sin^{2}\left(\frac{\alpha}{2}\right) = \frac{1-\cos\alpha}{2}$$

Property

tan has vertical asymptotes at $\theta = \frac{\pi}{2} (2N - 1)$ for $N \in \mathbb{Z}$.

Proof: At
$$\theta = \frac{\pi}{2} (2N - 1)$$
, $\cos \theta = 0$.

Property tan : $\mathbb{R} \setminus \{\frac{\pi}{2}(2N-1) : N \in \mathbb{Z}\} \to \mathbb{R}$

Figure 1.9: Graph of $\tan \theta$.

Property tan is periodic with period π .

Property: Double angle formula for tan
$\tan(\theta + \phi) = \frac{\tan \theta + \tan \phi}{1 - \tan \theta \tan \phi}$
Proof: $\tan(\theta + \phi) = \frac{\sin(\theta + \phi)}{\cos(\theta + \phi)}$ $= \frac{\sin\theta\cos\phi + \cos\theta\sin\phi}{\cos\theta\cos\phi - \sin\theta\sin\phi}.$
Now divide by $\cos\theta\cos\phi$.

Definition

Secant, cosecant and cotangent The secant, cosecant and cotangent functions are defined as

 $\sec x = \frac{1}{\cos x}, \quad \csc x = \frac{1}{\sin x}, \quad \cot x = \frac{1}{\tan x}.$

Property

$$1 + \tan^2 x = \sec^2 x$$

Proof: Divide $\cos^2 \theta + \sin^2 \theta = 1$ through by $\cos^2 x$.

Property

There are a number of "special angles" for which you should remember the values of sin, cos and tan:

Angle ($^{\circ}$)	Angle (^c)	sin	cos	tan
0	0	0	1	0
30	$\frac{\pi}{6}$	$\frac{1}{2}$	$\frac{\sqrt{3}}{2}$	$\frac{3}{\sqrt{3}}$
45	$\frac{\pi}{4}$	$\frac{1}{\sqrt{2}}$	$\frac{1}{\sqrt{2}}$	1
60	$\frac{\pi}{3}$	$\frac{\sqrt{3}}{2}$	$\frac{1}{2}$	$\sqrt{3}$
90	$\frac{\pi}{2}$	1	0	∞

These can be easily remembered via the following triangles:

Figure 1.10: Some well known results for particular angles can be derived by the above triangles for sin, cos and tan.