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BOUNDARY ELEMENT METHODS FOR HELMHOLTZ PROBLEMS
WITH WEAKLY IMPOSED BOUNDARY CONDITIONS\ast 

TIMO BETCKE\dagger , ERIK BURMAN\dagger , AND MATTHEW W. SCROGGS\ddagger 

\bfA \bfb \bfs \bft \bfr \bfa \bfc \bft . We consider boundary element methods where the Calder\'on projector is used for the
system matrix and boundary conditions are weakly imposed using a particular variational boundary
operator designed using techniques from augmented Lagrangian methods. Regardless of the boundary
conditions, both the primal trace variable and the flux are approximated. We focus on the imposition
of Dirichlet conditions on the Helmholtz equation and extend the analysis of the Laplace problem
from Boundary element methods with weakly imposed boundary conditions [Betcke, Burman, and
Scroggs, SIAM J. Sci. Comput., 41 (2019), pp. A1357--A1384] to this case. The theory is illustrated
by a series of numerical examples.

\bfK \bfe \bfy \bfw \bfo \bfr \bfd \bfs . boundary element methods, Helmholtz equation, wave scattering, Nitsche's method

\bfM \bfS \bfC \bfc \bfo \bfd \bfe \bfs . 65N38, 65R20

\bfD \bfO \bfI . 10.1137/20M1334802

1. Introduction. In a previous paper [3], we introduced a method of weakly
imposing boundary conditions on the boundary element method, inspired by Nitsche's
method [17] and Babu\u ska's penalty method [1] for the finite element method. Weak
imposition of boundary conditions here means that neither the Dirichlet trace nor
the Neumann trace is imposed exactly; instead an h-dependent boundary condition is
imposed that is weighted in such a way that optimal error estimates may be derived
and the exact boundary condition is recovered in the asymptotic limit.

In [3], we introduced the weak imposition of Dirichlet, Neumann, and Robin
boundary conditions on Laplace's equation; in [7], we applied this method to Signorini
contact conditions, again for Laplace's equation. In this paper, we look at how this
method and its analysis can be extended to be used for the Helmholtz equation, focus-
ing on the exterior Helmholtz Dirichlet problem: Find u = uinc+uscat \in H1

loc(\Delta ,\Omega +)
such that

 - \Delta u - k2u = 0 in \Omega +,(1.1a)

\partial uscat

\partial | \bfitx | 
 - ikuscat = o(| \bfitx |  - 1

) as | \bfitx | \rightarrow \infty ,(1.1b)

u = gD on \Gamma ,(1.1c)

where \Omega -- \subset \BbbR 3 is a bounded interior domain with polyhedral boundary \Gamma , \Omega + =
\BbbR 3 \setminus \Omega -- is the domain exterior to \Omega --, \bfitnu is the unit normal to the surface \Gamma pointing
outwards into \Omega +, uinc is a known incident wave, and k \in \BbbR is the wavenumber of the
problem. We assume that gD \in H1/2(\Gamma ), and u \in H3/2+\epsilon (\Gamma ) for some \epsilon > 0.
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A2896 TIMO BETCKE, ERIK BURMAN, AND MATTHEW W. SCROGGS

Due to the Sommerfeld radiation condition (1.1b), (1.1) has a unique solution
[20]. The formulation of Helmholtz problems using boundary integral equations are
covered in detail in [16], and their discretization is examined in [23, section 7.6].

The use of discretization and the boundary element method to solve Helmholtz
problems has been well studied. For sufficiently small wavenumbers k and sufficiently
smooth boundaries, the operators involved are coercive, and hence a priori error
bounds can be derived [22, 21, 8]. For values of k and domains for which coercivity
cannot be shown, error bounds have been shown that involve both the mesh size h
and the wavenumber k [2, 19]. If the wavenumber is varied, then the mesh must be
refined to keep the value of hk constant in order to maintain a low error [10]. The
use of hp-BEM for Helmholtz has also been studied and analyzed [14, 15].

The use of blocked operator formulations to solve Helmholtz problems is com-
mon for domain decomposition problems, where the boundary element method is
used in multiple domains with different wavenumbers [18, 12], or a combination of
finite and boundary element methods can be used [11]. To avoid the appearance of
spurious resonances in solutions, coupled stabilized formulations can be solved [9].
The formulations presented in this paper are, in general, more expensive than stan-
dard formulations, as they require the assembly of the full Calder\'on system. In these
cases, however, larger blocked systems are already being assembled, and so it may be
possible to impose boundary conditions on them weakly with little additional cost.

The method proposed in this paper is applicable to low and medium frequency
problems. In practice, preconditioning limits the method's effectiveness for higher
frequency problems. However, one main advantage of this method is its immunity
to eigenvalues of the interior problem: the solution to (1.1) can be found for any
wavenumber using our method without any modification to stabilize against eigenval-
ues being necessary.

Although we do not present an analysis of problems with mixed boundary condi-
tions, we discuss our method's potential application to such problems in section 6. As
we discussed in [3] for Laplace problems, our method of weakly imposing boundary
conditions is advantageous when solving mixed problems, as they can be implemented
by assembling different sparse terms on different parts of the mesh without needing
to adapt the Calder\'on part of the formulation.

In section 2, we define the boundary operators used in our formulations and
present some of their important properties. In section 3, we derive our formulation
for Dirichlet Helmholtz problems. In section 4, we analyze this formulation and prove
a priori error bounds. In section 5, we present some numerical experiments, and in
section 6 we give some concluding remarks.

2. Boundary operators. We define the Green's function for the Helmholtz
operator in \BbbR 3 by

(2.1) G(\bfitx ,\bfity ) =
eik| \bfitx  - \bfity | 

4π| \bfitx  - \bfity | 
.

In this paper, we focus on the problem in \BbbR 3. Similar analysis can be used for problems

in \BbbR 2, in which case this definition should be replaced by G(\bfitx ,\bfity ) = i
4H

(1)
0 (k | \bfitx  - \bfity | ),

where H
(1)
0 is a Hankel function of the first kind.

In the standard fashion (see, e.g., [23, Chapter 6]), we define the single layer po-
tential operator, \scrV : H - 1/2(\Gamma ) \rightarrow H1

loc(\Omega 
+), and the double layer potential operator,

\scrK : H1/2(\Gamma ) \rightarrow H1
loc(\Omega 

+) for v \in H1/2(\Gamma ), \mu \in H - 1/2(\Gamma ), and \bfitx \in \Omega + \setminus \Gamma by
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HELMHOLTZ WITH WEAKLY IMPOSED BOUNDARY CONDITIONS A2897

(\scrV \mu )(\bfitx ) :=
\int 
\Gamma 

G(\bfitx ,\bfity )\mu (\bfity ) d\bfity ,(2.2)

(\scrK v)(\bfitx ) :=

\int 
\Gamma 

\partial G(\bfitx ,\bfity )

\partial \bfitnu \bfity 
v(\bfity ) d\bfity .(2.3)

We define the space H1
loc(\Delta ,\Omega +) := \{ v \in H1

loc(\Omega 
+) : \Delta v \in L2(\Omega +)\} , and then

we define the Dirichlet and Neumann traces, \gamma +
D : H1

loc(\Omega 
+) \rightarrow H1/2(\Gamma ) and \gamma +

N :
H1

loc(\Delta ,\Omega +) \rightarrow H - 1/2(\Gamma ), by

\gamma +
Df(\bfitx ) := lim

\Omega +\ni \bfity \rightarrow \bfitx \in \Gamma 
f(\bfity ),(2.4)

\gamma +
Nf(\bfitx ) := lim

\Omega +\ni \bfity \rightarrow \bfitx \in \Gamma 
\bfitnu \bfitx \cdot \nabla f(\bfity ).(2.5)

We recall that if the Dirichlet and Neumann traces of a solution of (1.1a) are
known, then the potentials (2.2) and (2.3) may be used to reconstruct the function in
\Omega + using the following relation.

(2.6) u = \scrK (\gamma +
Du) - \scrV (\gamma +

Nu).

It is also known [23, Lemma 6.6] that for all \mu \in H - 1/2(\Gamma ), the function

(2.7) u\scrV 
\mu := \scrV \mu 

satisfies  - \Delta u\scrV 
\mu  - k2u\scrV 

\mu = 0. Similarly, for the double layer potential there holds [23,

Lemma 6.10] that for all v \in H1/2(\Gamma ), the function

(2.8) u\scrK 
v := \scrK v

satisfies  - \Delta u\scrK 
v  - k2u\scrK 

v = 0.
We define \{ \gamma Df\} \Gamma and \{ \gamma Nf\} \Gamma to be the averages of the interior and exterior

Dirichlet and Neumann traces of f . We define the single layer, double layer, ad-
joint double layer, and hypersingular boundary integral operators, \sansV : H - 1/2(\Gamma ) \rightarrow 
H1/2(\Gamma ), \sansK : H1/2(\Gamma ) \rightarrow H1/2(\Gamma ), \sansK \prime : H - 1/2(\Gamma ) \rightarrow H - 1/2(\Gamma ), and \sansW : H1/2(\Gamma ) \rightarrow 
H - 1/2(\Gamma ), by

(\sansK v)(\bfitx ) := \{ \gamma D\scrK v\} \Gamma (\bfitx ), (\sansV \mu )(\bfitx ) := \{ \gamma D\scrV \mu \} \Gamma (\bfitx ),(2.9a)

(\sansW v)(\bfitx ) :=  - \{ \gamma N\scrK v\} \Gamma (\bfitx ), (\sansK \prime \mu )(\bfitx ) := \{ \gamma N\scrV \mu \} \Gamma (\bfitx ),(2.9b)

where \bfitx \in \Gamma , v \in H1/2(\Gamma ) and \mu \in H - 1/2(\Gamma ) [23, Chapter 6].
We define J\gamma DK\Gamma := \gamma +

D  - \gamma --
D and J\gamma NK\Gamma := \gamma +

N  - \gamma --
N to be the jumps of the interior

and exterior Dirichlet and Neumann traces across the boundary. In [23, Chapter 6],
the following jump conditions are shown:

J\gamma DK\Gamma \scrV = J\gamma NK\Gamma \scrK = 0, J\gamma NK\Gamma \scrV =  - J\gamma DK\Gamma \scrK =  - \sansI \sansd ,(2.10)

where \sansI \sansd is the identity operator.
It follows from (2.9) and (2.10) that

\gamma +
D\scrV = \sansV , \gamma +

N\scrV =  - \sigma \sansI \sansd + \sansK \prime ,(2.11a)

\gamma +
D\scrK = (1 - \sigma )\sansI \sansd + \sansK , \gamma +

N\scrK =  - \sansW ,(2.11b)

\gamma --
D\scrV = \sansV , \gamma --

N\scrV = \sigma \sansI \sansd + \sansK \prime ,(2.11c)

\gamma --
D\scrK = (1 - \sigma )\sansI \sansd + \sansK , \gamma --

N\scrK =  - \sansW ,(2.11d)

where \sigma is defined as in [23, equation 6.11]. We note that \sigma = 1
2 almost everywhere.
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A2898 TIMO BETCKE, ERIK BURMAN, AND MATTHEW W. SCROGGS

The following coercivity results are known for the single layer and hypersingular
operators in \BbbR 3, where \langle \cdot , \cdot \rangle \Gamma denotes the H1/2(\Gamma )--H - 1/2(\Gamma ) duality pairing.

Lemma 2.1 (G\r arding's inequality for \sansV ). There exists a compact operator \sansT \sansV :
H - 1/2(\Gamma ) \rightarrow H1/2(\Gamma ) and \alpha \sansV > 0 such that

\alpha \sansV \| \mu \| 2H - 1/2(\Gamma ) \leqslant \langle \sansV \mu , \mu \rangle \Gamma + \langle \sansT \sansV \mu , \mu \rangle \Gamma \forall \mu \in H - 1/2(\Gamma ).(2.12)

Proof. [23, Theorem 6.40].

Lemma 2.2 (G\r arding's inequality for \sansW ). There exists a compact operator \sansT \sansW :
H1/2(\Gamma ) \rightarrow H - 1/2(\Gamma ) and \alpha \sansW > 0 such that

\alpha \sansW \| v\| 2H1/2(\Gamma ) \leqslant \langle \sansW v, v\rangle \Gamma + \langle \sansT \sansW v, v\rangle \Gamma \forall v \in H
1/2
\ast (\Gamma ),(2.13)

where H
1/2
\ast (\Gamma ) denotes the set of functions v \in H1/2(\Gamma ) such that v = 0, where

v :=
\langle v, 1\rangle \Gamma 
\langle 1, 1\rangle \Gamma 

is the average value of v.

Proof. This follows by applying the proof of [23, Theorem 6.40] to the hypersin-
gular operator.

The following boundedness results are also known.

Lemma 2.3 (boundedness). There exist C\sansV , C\sansK , C
\prime 
\sansK , C\sansW > 0 such that

i) \| \sansV \mu \| H1/2(\Gamma ) \leqslant C\sansV \| \mu \| H - 1/2(\Gamma ) \forall \mu \in H - 1/2(\Gamma ),(2.14)

ii) \| \sansK v\| H1/2(\Gamma ) \leqslant C\sansK \| v\| H1/2(\Gamma ) \forall v \in H1/2(\Gamma ),(2.15)

iii) \| \sansK \prime \mu \| H - 1/2(\Gamma ) \leqslant C\sansK \prime \| \mu \| H - 1/2(\Gamma ) \forall \mu \in H - 1/2(\Gamma ),(2.16)

iv) \| \sansW v\| H - 1/2(\Gamma ) \leqslant C\sansW \| v\| H1/2(\Gamma ) \forall v \in H1/2(\Gamma ).(2.17)

Proof. [23, sections 6.2--6.5 and 6.9].

We define the exterior Calder\'on projector by

(2.18) \sansC + :=

\biggl( 
(1 - \sigma )\sansI \sansd + \sansK  - \sansV 

 - \sansW \sigma \sansI \sansd  - \sansK \prime 

\biggr) 
,

and recall that if u is a solution of (1.1a), then it satisfies

(2.19) \sansC +

\biggl( 
\gamma +
Du

\gamma +
Nu

\biggr) 
=

\biggl( 
\gamma +
Du

\gamma +
Nu

\biggr) 
.

When considering eigenvalues of the Laplacian, we will make use of the interior
Calder\'on projector. This is defined by

(2.20) \sansC -- :=

\biggl( 
(1 - \sigma )\sansI \sansd  - \sansK \sansV 

\sansW \sigma \sansI \sansd + \sansK \prime 

\biggr) 
.

If u-- is a solution of an interior Helmholtz problem, then it satisfies

(2.21) \sansC --

\biggl( 
\gamma --
Du

--

\gamma --
Nu

--

\biggr) 
=

\biggl( 
\gamma --
Du

--

\gamma --
Nu

--

\biggr) 
.
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HELMHOLTZ WITH WEAKLY IMPOSED BOUNDARY CONDITIONS A2899

Taking the product of the exterior identity (2.19) with two test functions and
using the fact that \sigma = 1

2 almost everywhere, we arrive at the following equations:\bigl\langle 
\gamma +
Du, \mu 

\bigr\rangle 
\Gamma 
=

\bigl\langle 
( 12 \sansI \sansd + \sansK )\gamma +

Du, \mu 
\bigr\rangle 
\Gamma 
 - 

\bigl\langle 
\sansV \gamma +

Nu, \mu 
\bigr\rangle 
\Gamma 

\forall \mu \in H - 1/2(\Gamma ),(2.22) \bigl\langle 
\gamma +
Nu, v

\bigr\rangle 
\Gamma 
=

\bigl\langle 
( 12 \sansI \sansd  - \sansK \prime )\gamma +

Nu, v
\bigr\rangle 
\Gamma 
 - 
\bigl\langle 
\sansW \gamma +

Du, v
\bigr\rangle 
\Gamma 

\forall v \in H1/2(\Gamma ).(2.23)

For a more compact notation, we write u in the place of \gamma +
Du and introduce

\lambda = \gamma +
Nu and the exterior Calder\'on form

(2.24) \scrC +[(u, \lambda ), (v, \mu )] :=
\bigl\langle 
( 12 \sansI \sansd + \sansK )u, \mu 

\bigr\rangle 
\Gamma 
 - \langle \sansV \lambda , \mu \rangle \Gamma 

+
\bigl\langle 
( 12 \sansI \sansd  - \sansK \prime )\lambda , v

\bigr\rangle 
\Gamma 
 - \langle \sansW u, v\rangle \Gamma .

We may then rewrite (2.22) and (2.23) as

(2.25) \scrC +[(u, \lambda ), (v, \mu )] = \langle u, \mu \rangle \Gamma + \langle \lambda , v\rangle \Gamma .

We will also frequently use the multitrace form, defined by

(2.26) \scrA [(u, \lambda ), (v, \mu )] :=  - \langle \sansK u, \mu \rangle \Gamma + \langle \sansV \lambda , \mu \rangle \Gamma + \langle \sansK \prime \lambda , v\rangle \Gamma + \langle \sansW u, v\rangle \Gamma ,

and the multitrace form with compact perturbation,

(2.27) \scrA \sansT [(u, \lambda ), (v, \mu )] :=  - \langle \sansK u, \mu \rangle \Gamma + \langle (\sansV + \sansT \sansV )\lambda , \mu \rangle \Gamma 
+ \langle \sansK \prime \lambda , v\rangle \Gamma + \langle (\sansW + \sansT \sansW )u, v\rangle \Gamma .

Using (2.26), we may rewrite (2.25) as

(2.28) \scrA [(u, \lambda ), (v, \mu )] =  - 1
2 \langle u, \mu \rangle \Gamma  - 1

2 \langle \lambda , v\rangle \Gamma .

To quantify the two traces we introduce the product space

\BbbV := H1/2(\Gamma )\times H - 1/2(\Gamma ).

We also introduce the associated norm

\| (v, \mu )\| \BbbV := \| v\| H1/2(\Gamma ) + \| \mu \| H - 1/2(\Gamma ) .

Using the results in Lemmas 2.1--2.3, we obtain the continuity and coercivity of
\scrA .

Lemma 2.4 (continuity). There exists C > 0 such that

| \scrA [(w, \eta ), (v, \mu )]| \leqslant C \| (w, \eta )\| \BbbV \| (v, \mu )\| \BbbV \forall (w, \eta ), (v, \mu ) \in \BbbV .

Proof. Use Lemma 2.3.

Lemma 2.5 (coercivity). There exists \alpha > 0 and compact operators \sansT \sansV and \sansT \sansW 

such that

\alpha 
\Bigl( 
| v| 2

H
1/2
\ast (\Gamma )

+ \| \mu \| 2H - 1/2(\Gamma )

\Bigr) 
\leqslant \scrA [(v, \mu ), (v, \mu )] + \langle \sansT \sansW v, v\rangle \Gamma + \langle \sansT \sansV \mu , \mu \rangle \Gamma 

\forall (v, \mu ) \in \BbbV .

Proof. Use the coercivity of \sansV and \sansW from Lemmas 2.1 and 2.2, and let \alpha =
min(\alpha \sansW , \alpha \sansV ).
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3. Derivation of a formulation for Helmholtz Dirichlet problems. In
this section, we derive a formulation for the exterior Helmholtz problem with non-
homogeneous Dirichlet conditions.

As in [3], we write the boundary condition as

(3.1) R\Gamma (u, \lambda ) = 0

and look to solve

(3.2) \scrA [(u, \lambda ), (v, \mu )] =  - 1
2 \langle u, \mu \rangle \Gamma  - 1

2 \langle \lambda , v\rangle \Gamma + \langle R\Gamma (u, \lambda ), \beta 1v + \beta 2\mu \rangle \Gamma .

3.1. Dirichlet boundary condition. To impose a Dirichlet boundary con-

dition, we choose \beta 1 =  - i\beta 
1/2
D , \beta 2 = i\beta 

 - 1/2
D , where \beta D will be identified with a

mesh-dependent penalty parameter, and

(3.3) RD(u, \lambda ) := i\beta 
1/2
D (gD  - u),

where gD \in H1/2(\Gamma ) is the Dirichlet data.
Inserting this into (3.2), we obtain the formulation

(3.4) \scrA [(u, \lambda ), (v, \mu )] - 1
2 \langle u, \mu \rangle \Gamma + 1

2 \langle \lambda , v\rangle \Gamma + \langle \beta Du, v\rangle \Gamma = \langle gD, \beta Dv  - \mu \rangle \Gamma .

This leads us to the following formulation for the Helmholtz Dirichlet problem:
Find (u, \lambda ) \in \BbbV such that

\scrA [(u, \lambda ), (v, \mu )] + \scrB +
D [(u, \lambda ), (v, \mu )] = \scrL +

D(v, \mu ) \forall (v, \mu ) \in \BbbV ,(3.5)

where

\scrB +
D [(u, \lambda ), (v, \mu )] :=

1
2 \langle \lambda , v\rangle \Gamma  - 1

2 \langle u, \mu \rangle \Gamma + \langle \beta Du, v\rangle \Gamma ,(3.6)

\scrL +
D(v, \mu ) := \langle gD, \beta Dv  - \mu \rangle \Gamma .(3.7)

We now show that a solution of the Helmholtz problem (1.1) is also a solution of
this weak formulation.

Proposition 3.1. If u is a solution of (1.1), then (\gamma +
Du, \gamma +

Nu) is a solution of
(3.5).

Proof. Let (v, \mu ) \in \BbbV . By (2.28), we see that

(\scrA + \scrB +
D)[(\gamma 

+
Du, \gamma +

Nu), (v, \mu )]

=  - 1
2

\bigl\langle 
\gamma +
Du, \mu 

\bigr\rangle 
\Gamma 
 - 1

2

\bigl\langle 
\gamma +
Nu, v

\bigr\rangle 
\Gamma 
+ 1

2

\bigl\langle 
\gamma +
Nu, v

\bigr\rangle 
\Gamma 
 - 1

2

\bigl\langle 
\gamma +
Du, \mu 

\bigr\rangle 
\Gamma 
+

\bigl\langle 
\beta D\gamma 

+
Du, v

\bigr\rangle 
\Gamma 

=  - 
\bigl\langle 
\gamma +
Du, \mu 

\bigr\rangle 
\Gamma 
+
\bigl\langle 
\beta D\gamma 

+
Du, v

\bigr\rangle 
\Gamma 

=
\bigl\langle 
\gamma +
Du, \beta Dv  - \mu 

\bigr\rangle 
\Gamma 
.

Using (1.1c), we see that

(\scrA + \scrB +
D)[(\gamma 

+
Du, \gamma +

Nu), (v, \mu )] = \langle gD, \beta Dv  - \mu \rangle \Gamma 
= \scrL +

D(v, \mu ).

To discretize (3.5), we introduce a family of conforming, shape regular triangula-
tions of \Gamma , \{ \scrT h\} h>0, indexed by the largest element diameter of the mesh, h. We then
consider the following finite element spaces:
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Pp
h := \{ vh \in C0(\Gamma ) : vh| T \in \BbbP p(T ), for every T \in \scrT h\} ,

DPq
h := \{ vh \in L2(\Gamma ) : vh| T \in \BbbP q(T ), for every T \in \scrT h\} ,

where \BbbP p(T ) denotes the space of polynomials of order less than or equal to p on a
triangle T , and \{ \Gamma i\} Mi=1 are the polygonal faces of \Gamma . We observe that Pp

h \subset H1/2(\Gamma )
and DPq

h \subset L2(\Gamma ).
We let \BbbV h be a discrete product space: in our case, we take this to be equal to

either Pp
h(\Gamma )\times DPq

h(\Gamma ) or P
p
h(\Gamma )\times Pq

h(\Gamma ), although a wide range of other choices are
possible. We let \BbbW be a product Hilbert space, such that \BbbV h \subset \BbbW \subset \BbbV , and we let
\| \cdot \| \scrB be a norm defined on \BbbW , such that for all (v, \mu ) \in \BbbW , \| (v, \mu )\| \scrB \geqslant \| (v, \mu )\| \BbbV .

Using the space \BbbV h, we look to solve the discrete problem: Find (uh, \lambda h) \in \BbbV h

such that

\scrA [(uh, \lambda h), (vh, \mu h)] + \scrB --
D[(uh, \lambda h), (vh, \mu h)] = \scrL --

D(vh, \mu h) \forall (vh, \mu h) \in \BbbV h.(3.8)

We define the norm

\| (v, \mu )\| \scrB D
:= \| (v, \mu )\| \BbbV + | \beta D| 1/2 \| v\| L2(\Gamma ) .

4. Analysis. In this section, we analyze the formulation derived in the previous
section.

4.1. Analysis of the continuous problem. We begin by analyzing the con-
tinuous problem (3.5). In the same way as we did in [3], we prove that the form
\scrA + \scrB +

D is continuous.

Proposition 4.1 (continuity). There exists M > 0 such that \forall (w, \eta ), (v, \mu ) \in 
\BbbW , \bigm| \bigm| \scrA [(w, \eta ), (v, \mu )] + \scrB +

D [(w, \eta ), (v, \mu )]
\bigm| \bigm| \leqslant M \| (w, \eta )\| \scrB D

\| (v, \mu )\| \scrB D
.

Proof. This can be proved in the same way as [3, Proposition 4.13] but with | \beta D| 
in the place of \beta D.

Eigenvalues of the interior Laplacian have an effect on the boundary integral
formulation of the exterior problem. These eigenvalues are defined as follows.

Definition 4.2 (eigenvalues of the Laplacian). If the interior Laplace problem
(find u such that

 - \Delta u = lDu in \Omega --,(4.1a)

u = 0 on \Gamma )(4.1b)

has multiple solutions, then lD is called a Dirichlet eigenvalue of the interior Lapla-
cian.

If the interior Laplace problem (find u such that

 - \Delta u = lNu in \Omega --,(4.2a)

\partial u

\partial \bfitnu 
= 0 on \Gamma )(4.2b)

has multiple solutions that differ by more than a constant, then lN is called a Neumann
eigenvalue of the interior Laplacian.

If the interior Laplace problem (find u such that
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A2902 TIMO BETCKE, ERIK BURMAN, AND MATTHEW W. SCROGGS

 - \Delta u = lRu in \Omega --,(4.3a)

\partial u

\partial \bfitnu 
+ \beta Du = 0 on \Gamma )(4.3b)

has multiple solutions, then we call lR a Robin eigenvalue of the interior Laplacian
with Robin parameter \beta D.

We now prove some important properties of these eigenvalues.

Lemma 4.3. For l \in \BbbC , at most one of the following statements is true:
\bullet l is a Dirichlet eigenvalue of the interior Laplacian;
\bullet l is a Neumann eigenvalue of the interior Laplacian;
\bullet l is a Robin eigenvalue of the interior Laplacian (for some \beta D \not = 0).

Proof. By [23, section 7.6], we know that a value cannot be both a Dirichlet and
a Neumann eigenvalue.

If l is both a Dirichlet and a Robin eigenvalue, then there exist u1 and u2 satisfying
(4.1a) whose values on \Gamma satisfy u1 = u2 = 0 and

0 =
\partial u1

\partial \bfitnu 
+ \beta Du1 =

\partial u1

\partial \bfitnu 
,

0 =
\partial u2

\partial \bfitnu 
+ \beta Du2 =

\partial u2

\partial \bfitnu 
.

If u1 and u2 differed by a constant, their values on \Gamma would differ by the same constant,
contradicting the boundary conditions u1 = u2 = 0. Therefore l is also a Neumann
eigenvalue, which is a contradiction.

Similarly, if l is both a Neumann and a Robin eigenvalue, then in the same way
we see that l is also a Dirichlet eigenvalue, leading to a similar contradiction.

Lemma 4.4. If Im(\beta D) \not = 0, then the interior Laplacian with Robin parameter \beta D

has no nontrivial real Robin eigenvalues.

Proof. Let \beta D \in \BbbC with Im(\beta D) \not = 0. Suppose that lR \in \BbbR \setminus \{ 0\} is a Robin
eigenvalue of the interior Laplacian with corresponding eigenfunction uR, i.e.,

 - \Delta uR = lRuR in \Omega --,

\partial uR

\partial \bfitnu 
+ \beta DuR = 0 on \Gamma .

Consider the weak formulation of this problem: find uR \in H1(\Omega ) such that

\langle \nabla uR,\nabla v\rangle \Omega + \beta D \langle uR, v\rangle \Gamma = lR \langle uR, v\rangle \Omega \forall v \in H1(\Omega ).

Taking v = uR leads to

\| \nabla uR\| 2L2(\Omega ) + \beta D \| uR\| 2L2(\Gamma ) = lR \langle uR, uR\rangle 2\Omega .

Taking the imaginary part of this gives

Im(\beta D) \| uR\| 2L2(\Gamma ) = 0.

As Im(\beta D) \not = 0, this implies that \| uR\| L2(\Gamma ) = 0, and so uR = 0 on \Gamma .
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This, however, implies that uR is also a Dirichlet eigenfunction of the Lapla-
cian with eigenvalue lR, contradicting Lemma 4.3. Hence no such real eigenvalue
exists.

We now proceed to prove that the form \scrA + \scrB +
D is injective. First we prove this

when k2 is not a Dirichlet eigenvalue. Note that by Lemma 4.4, the assumption that
k2 is not a Robin eigenvalue of the interior Laplacian holds whenever Im(\beta D) \not = 0.

Lemma 4.5 (injectivity, part one). Let (v, \mu ) \in \BbbW . If k2 is not a Dirichlet
eigenvalue of the interior Laplacian and k2 is not a Robin eigenvalue of the interior
Laplacian with Robin parameter \beta D, then \forall (w, \eta ) \in \BbbW 

\scrA [(v, \mu ), (w, \eta )] + \scrB +
D [(v, \mu ), (w, \eta )] = 0

implies that (v, \mu ) = 0.

Proof. Suppose that (v, \mu ) \in \BbbW such that

(\scrA + \scrB +
D)[(v, \mu ), (w, \eta )] = 0 \forall (w, \eta ) \in \BbbW .(4.4)

Taking w = 0 in (4.4), we see that, \forall \eta \in H - 1/2(\Gamma ),

\langle \sansV \mu , \eta \rangle \Gamma =
\bigl\langle 
( 12 \sansI \sansd + \sansK )v, \eta 

\bigr\rangle 
\Gamma 
.(4.5)

k2 is not a Dirichlet eigenvalue of the interior Laplacian, so by [23, section 7.6]
we see that \sansV is invertible, and (as (4.5) is a direct boundary integral formulation)
there exists a solution to the interior Helmholtz equation \~p \in H1(\Omega --) such that

\gamma --
D\~p = v,

\gamma --
N\~p = \mu .

Taking \eta = 0 in (4.4), we see that, \forall w \in H1/2(\Gamma ),

0 = \langle \sansW v, w\rangle \Gamma + \langle \beta Dv, w\rangle \Gamma +
\bigl\langle 
( 12 \sansI \sansd + \sansK \prime )\mu ,w

\bigr\rangle 
\Gamma 
.(4.6)

We also know from the second line of the interior Calder\'on identity (2.21) that

\langle \sansW v, w\rangle \Gamma +
\bigl\langle 
( 12 \sansI \sansd + \sansK \prime )\mu ,w

\bigr\rangle 
\Gamma 
= \langle \sansW \gamma --

D\~p, w\rangle \Gamma +
\bigl\langle 
( 12 \sansI \sansd + \sansK \prime )\gamma --

N\~p, w
\bigr\rangle 
\Gamma 

(4.7)

= \langle \gamma --
N\~p, w\rangle \Gamma (4.8)

= \langle \mu ,w\rangle \Gamma ,(4.9)

and so using (4.6) we see that

0 = \langle \mu ,w\rangle \Gamma + \langle \beta Dv, w\rangle \Gamma ,(4.10)

and so \mu =  - \beta Dv.
This means that \~p is the solution (4.3) with lR = k2. If k2 is not an eigenvalue of

(4.3), then the unique solution of this problem is \~p = 0, and so v = \mu = 0.

Next, we prove that the \scrA + \scrB +
D is injective when k2 is a Dirichlet eigenvalue.

Lemma 4.6 (injectivity, part two). Let (v, \mu ) \in \BbbW . If k2 is a Dirichlet eigenvalue
of the interior Laplacian, then \forall (w, \eta ) \in \BbbW 

\scrA [(v, \mu ), (w, \eta )] + \scrB +
D [(v, \mu ), (w, \eta )] = 0

implies that (v, \mu ) = 0.
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Proof. Suppose that (v, \mu ) \in \BbbW such that

(\scrA + \scrB +
D)[(v, \mu ), (w, \eta )] = 0 \forall (w, \eta ) \in \BbbW .(4.11)

Taking w = 0 in (4.11), we see that, \forall \eta \in H - 1/2(\Gamma ),

\langle \sansV \mu , \eta \rangle \Gamma =
\bigl\langle 
( 12 \sansI \sansd + \sansK )v, \eta 

\bigr\rangle 
\Gamma 
.(4.12)

As k2 is a Dirichlet eigenvalue of the interior Laplacian, then we see by Lemma 4.3
that k2 is not a Neumann eigenvalue or a Robin eigenvalue.

As k2 is not a Neumann eigenvalue, we see by [23, Lemma 7.6] that the equation\bigl\langle 
( 12 \sansI \sansd + \sansK )u, \eta 

\bigr\rangle 
\Gamma 
= \langle g, \eta \rangle \Gamma \forall \eta \in H - 1/2(\Gamma )

has a unique solution. By (4.12), we see that v is the solution of this equation with
g = \sansV \mu .

Let \~p = \scrV \mu  - \scrK v. By (2.7) and (2.8), we see that

 - \Delta \~p - k2\~p = 0 in \Omega --.(4.13)

Taking the Dirichlet trace of \~p and applying (4.12), we see that on \Gamma 

\gamma --
D\~p = \sansV \mu + ( 12 \sansI \sansd  - \sansK )v

= ( 12 \sansI \sansd + \sansK )v + ( 12 \sansI \sansd  - \sansK )v

= v.(4.14)

We therefore conclude, using the first line of the interior Calder\'on identity (2.21) and
(4.12), that

\sansV \gamma --
N\~p = ( 12 \sansI \sansd + \sansK )\gamma --

D\~p

= ( 12 \sansI \sansd + \sansK )v

= \sansV \mu .(4.15)

Note that as k2 is a Dirichlet eigenvalue, \sansV is not injective so this does not necessarily
imply that \gamma --

N\~p = \mu .
By [23, Lemma 7.6], the boundary integral equation

( 12 \sansI \sansd + \sansK )f = \mu  - \gamma --
N\~p(4.16)

has a unique solution. Let \~q = \scrV f . By (2.7), we see that

 - \Delta \~q  - k2\~q = 0 in \Omega --.(4.17)

Taking the Neumann trace of \~q and using (2.11c) and (4.16), we see that on \Gamma 

\gamma --
N\~q = \gamma --

N(\scrV f)
= ( 12 \sansI \sansd + \sansK )f

= \mu  - \gamma --
N\~p.(4.18)

We know from the first line of the interior Calder\'on identity (2.21) that

( 12 \sansI \sansd + \sansK )\gamma --
D\~q = \sansV \gamma --

N\~q.
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Applying (4.18) and then using (4.15) gives

( 12 \sansI \sansd + \sansK )\gamma --
D\~q = \sansV (\mu  - \gamma --

N\~p)

= 0.(4.19)

By [23, Lemma 7.6], 1
2 \sansI \sansd +\sansK is injective, so \gamma --

D\~q = 0. By [23, Lemma 7.5], this implies
that ( 12 \sansI \sansd  - \sansK \prime )\gamma --

N\~q = 0, and so by (4.18),

( 12 \sansI \sansd  - \sansK \prime )\gamma --
N\~p = ( 12 \sansI \sansd  - \sansK \prime )\mu .(4.20)

Using (4.20) and the second line of the interior Calder\'on identity (2.21), we see
that, \forall w \in H1/2(\Gamma ),

\langle \sansW v, w\rangle \Gamma +
\bigl\langle 
( 12 \sansI \sansd + \sansK \prime )\mu ,w

\bigr\rangle 
\Gamma 
= \langle \sansW v, w\rangle \Gamma + \langle \mu ,w\rangle \Gamma +

\bigl\langle 
( - 1

2 \sansI \sansd + \sansK \prime )\mu ,w
\bigr\rangle 
\Gamma 

= \langle \sansW \gamma --
D\~p, w\rangle \Gamma + \langle \mu ,w\rangle \Gamma +

\bigl\langle 
( - 1

2 \sansI \sansd + \sansK \prime )\gamma --
N\~p, w

\bigr\rangle 
\Gamma 

= \langle \mu ,w\rangle \Gamma .(4.21)

Taking \eta = 0 in (4.4) and applying (4.21), we see that

0 = \langle \sansW v, w\rangle \Gamma + \langle \beta Dv, w\rangle \Gamma +
\bigl\langle 
( 12 \sansI \sansd + \sansK \prime )\mu ,w

\bigr\rangle 
\Gamma 

= \langle \mu ,w\rangle \Gamma + \langle \beta Dv, w\rangle \Gamma ,(4.22)

and so \mu =  - \beta Dv.
Consider \~p+ \~q. From (4.13) and (4.17), we see that

 - \Delta (\~p+ \~q) - k2(\~p+ \~q) = 0 in \Omega --.(4.23)

Using the fact that \gamma --
D\~q = 0 (as we concluded from (4.19)) and (4.14) and (4.18), we

see that on \Gamma 

\gamma --
D(\~p+ \~q) = \gamma --

D\~p+ \gamma --
D\~q

= v,(4.24)

\gamma --
N(\~p+ \~q) = \gamma --

N\~p+ \gamma --
N\~q

= \mu ,(4.25)

and so, using (4.22), we see that

\partial (\~p+ \~q)

\partial \bfitnu 
+ \beta D(\~p+ \~q) = \mu + \beta Dv

= 0.(4.26)

Therefore \~p + \~q is solution of the Robin problem (4.3). Since k2 is not a Robin
eigenvalue, we see that \~p+ \~q = 0 in \Omega --, and so by (4.24) and (4.25) v = \mu = 0.

We now combine the previous two results.

Proposition 4.7 (injectivity). Let (v, \mu ) \in \BbbW . If k2 is not a Robin eigenvalue
of the interior Laplacian with Robin parameter \beta D, then \forall (w, \eta ) \in \BbbW 

\scrA [(v, \mu ), (w, \eta )] + \scrB +
D [(v, \mu ), (w, \eta )] = 0

implies that (v, \mu ) = 0.
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Proof. Combine Lemmas 4.5 and 4.6.

Using Lemma 4.4, we see that the following corollary holds.

Corollary 4.8. If Im(\beta D) \not = 0 and \forall (w, \eta ) \in \BbbW 

\scrA [(v, \mu ), (w, \eta )] + \scrB +
D [(v, \mu ), (w, \eta )] = 0,

then (v, \mu ) = 0.

We now prove that the form \scrA \sansT +\scrB +
D is coercive, where \scrA \sansT is the multitrace form

with compact perturbation as defined in (2.27).

Lemma 4.9. If Re(\beta D) \geqslant 0, then there exists \alpha > 0 such that \forall (v, \mu ) \in \BbbV ,

\alpha \| (v, \mu )\| 2\BbbV \leqslant 
\bigm| \bigm| (\scrA \sansT + \scrB +

D)[(v, \mu ), (v, \mu )]
\bigm| \bigm| .

Proof. Using the definitions of \scrA \sansT and \scrB +
D , we see that

Re((\scrA \sansT + \scrB +
D)[(v, \mu ), (v, \mu )])

= Re( - \langle \sansK v, \mu \rangle \Gamma + \langle (\sansV + \sansT \sansV )\mu , \mu \rangle \Gamma + \langle \sansK \prime \mu , v\rangle \Gamma 
+ \langle (\sansW + \sansT \sansW )v, v\rangle \Gamma + 1

2 \langle \mu , v\rangle \Gamma  - 1
2 \langle v, \mu \rangle \Gamma + \langle \beta Dv, v\rangle \Gamma )

= \langle (\sansV + \sansT \sansV )\mu , \mu \rangle \Gamma + \langle (\sansW + \sansT \sansW )v, v\rangle \Gamma + \langle Re(\beta D)v, v\rangle \Gamma .

Applying Lemmas 2.1 and 2.2 and using the assumption that Re(\beta D) \geqslant 0, we see that

Re((\scrA \sansT + \scrB +
D)[(v, \mu ), (v, \mu )]) \geqslant \alpha \sansV \| \mu \| 2H - 1/2(\Gamma ) + \alpha \sansW \| v\| 2H1/2(\Gamma ) +Re(\beta D) \| v\| 2L2(\Gamma )

\geqslant \alpha \sansV \| \mu \| 2H - 1/2(\Gamma ) + \alpha \sansW \| v\| 2H1/2(\Gamma )

\geqslant \alpha \| (v, \mu )\| 2\BbbV 
for some \alpha > 0.

The result then follows from that fact that for any c \in \BbbC , | c| \geqslant Re(c).

Using the previous lemma, we can now prove that the form \scrA + \scrB +
D is coercive.

Proposition 4.10 (coercivity). If Re(\beta D) > 0 and k2 is not a Robin eigenvalue
of the interior Laplacian with Robin parameter \beta D, then there exists \alpha > 0 such that
\forall (v, \mu )

\alpha \| (v, \mu )\| \BbbV \leqslant sup
(w,\eta )\in \BbbV 

\bigm| \bigm| (\scrA + \scrB +
D)[(v, \mu ), (w, \eta )]

\bigm| \bigm| 
\| (w, \eta )\| \BbbV 

.

Proof. Following the proof of [13, Theorem 2], we suppose (for a contradiction)
that the result does not hold. This means that there exists a sequence (vn, \mu n) such
that \| (vn, \mu n)\| \BbbV = 1 (\forall n) and

sup
(w,\eta )\in \BbbV 

\bigm| \bigm| (\scrA + \scrB +
D)[(vn, \mu n), (w, \eta )]

\bigm| \bigm| 
\| (w, \eta )\| \BbbV 

\leqslant 
1

n
.

This implies that for every (w, \eta ) \in \BbbV ,\bigm| \bigm| (\scrA + \scrB +
D)[(vn, \mu n), (w, \eta )]

\bigm| \bigm| \leqslant 1

n
\| (w, \eta )\| \BbbV ,

and so

(4.27) lim
n\rightarrow \infty 

(\scrA + \scrB +
D)[(vn, \mu n), (w, \eta )] = 0.
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HELMHOLTZ WITH WEAKLY IMPOSED BOUNDARY CONDITIONS A2907

H1/2(\Gamma ) and H - 1/2(\Gamma ) are Hilbert spaces, so \BbbV is a Hilbert space. The bounded
sequence (vn, \mu n) therefore contains a weakly convergent subsequence (\~vn, \~\mu n) that
weakly converges to (v\infty , \mu \infty ) \in \BbbV .

By weak convergence and (4.27), we see that, for any (w, \eta ) \in \BbbV ,

0 = lim
j\rightarrow \infty 

(\scrA + \scrB +
D)[(\~vn, \~\mu n), (w, \eta )]

= (\scrA + \scrB +
D)[(v\infty , \mu \infty ), (w, \eta )].

By Proposition 4.7, it follows that (v\infty , \mu \infty ) = 0.
Using Lemma 4.9 and the fact that \| (\~vn, \~\mu n)\| \BbbV = 1, we see that there is \alpha > 0

such that (\forall n)

(\scrA + \scrB +
D)[(\~vn, \~\mu n), (\~vn, \~\mu n)]

= (\scrA \sansT + \scrB +
D)[(\~vn, \~\mu n), (\~vn, \~\mu n)] - \langle \sansT \sansV \~\mu n, \~\mu n\rangle \Gamma  - \langle \sansT \sansW \~vn, \~vn\rangle \Gamma 

\geqslant \alpha \| (\~vn, \~\mu n)\| 2\BbbV  - \langle \sansT \sansV \~\mu n, \~\mu n\rangle \Gamma  - \langle \sansT \sansW \~vn, \~vn\rangle \Gamma 
= \alpha  - \langle \sansT \sansV \~\mu n, \~\mu n\rangle \Gamma  - \langle \sansT \sansW \~vn, \~vn\rangle \Gamma .(4.28)

We also know that

\langle \sansT \sansV \~\mu n, \~\mu n\rangle \Gamma + \langle \sansT \sansW \~vn, \~vn\rangle \Gamma 
\leqslant \| \sansT \sansV \~\mu n\| H1/2(\Gamma ) \| \~\mu n\| H - 1/2(\Gamma ) + \| \sansT \sansW \~vn\| H - 1/2(\Gamma ) \| \~vn\| H1/2(\Gamma )

\leqslant \| (\sansT \sansW \~vn,\sansT \sansV \~\mu n)\| \BbbV \| (\~vn, \~\mu n)\| \BbbV 
= \| (\sansT \sansW \~vn,\sansT \sansV \~\mu n)\| \BbbV .(4.29)

But since \sansT \sansW and \sansT \sansV are compact operators and (\~vn, \~\mu n) converge weakly to zero we
have

(4.30) lim
n\rightarrow 0

\| (\sansT \sansW \~vn,\sansT \sansV \~\mu n)\| \BbbV = 0.

Combining (4.27)--(4.30), we see that

0 < \alpha \leqslant lim
n\rightarrow 0

(\scrA + \scrB +
D)[(\~vn, \~\mu n), (\~vn, \~\mu n)] = 0,

which is a contradiction.

We conclude our analysis of the continuous problem by showing that it is well-
posed.

Proposition 4.11. If Re(\beta D) > 0 and k2 is not a Robin eigenvalue of the interior
Laplacian with Robin parameter \beta D, then the continuous problem (3.5) has a unique
solution.

Proof. As shown in [23, Theorem 3.15], this is a direct consequence of Proposi-
tions 4.7 and 4.10.

4.2. Analysis of the discrete problem. We now proceed to analyze the dis-
crete problem (3.8). In this section we will use the following notation.

Definition 4.12. For two quantities a and b that may vary with h, we write a \lesssim b
if there is a constant h0 > 0 and an h-independent constant c \in \BbbR such that a \leqslant cb
\forall h < h0. We write a \eqsim b if a \lesssim b and b \lesssim a.

We start by proving that coercivity holds in the discrete case.
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Proposition 4.13 (discrete coercivity). If | \beta D| \lesssim 1 and k2 is not a Robin
eigenvalue of the interior Laplacian with Robin parameter \beta D, then there exist h0 \in \BbbR 
and \alpha > 0 such that \forall h < h0 and \forall (vh, \mu h) \in \BbbV h,

\alpha \| (vh, \mu h)\| \scrB D
\leqslant sup

(wh,\eta h)\in \BbbV h\setminus \{ 0\} 

\bigm| \bigm| \scrA [(vh, \mu h), (wh, \eta h)] + \scrB +
D [(vh, \mu h), (wh, \eta h)]

\bigm| \bigm| 
\| (wh, \eta h)\| \scrB D

.

Proof. Following the proof of [6, Theorem 2.2], we suppose (for a contradiction)
that the result does not hold. This implies that there exists a sequence (hn)n\in \BbbN such
that limn\rightarrow \infty hn = 0, and for each n there exists (vhn , \mu hn) \in \BbbV hn such that

\| (vhn
, \mu hn

)\| \scrB D
= 1,(4.31)

sup
(whn ,\eta hn )\in \BbbV hn

\bigm| \bigm| (\scrA + \scrB +
D)[(vhn

, \mu hn
), (whn

, \eta hn
)]
\bigm| \bigm| 

\| (whn
, \eta hn

)\| \scrB D

< \tau n,(4.32)

where \tau n > 0 and limn\rightarrow \infty \tau n = 0.
We define \sansF : \BbbV hn

\rightarrow \BbbW , for (thn
, \kappa hn

) \in \BbbV hn
, by

\langle \sansF (thn , \kappa hn), (whn , \eta hn)\rangle \Gamma = (\scrA + \scrB +
D)[(thn , \kappa hn), (whn , \eta hn)] \forall (whn , \eta hn) \in \BbbV hn .

By Lemmas 2.1 and 2.2, there exists a compact operator \sansT : \BbbV hn
\rightarrow \BbbV hn

such
that the real part of the operator \sansF +\sansT is elliptic. Following the proofs for the Laplace
problem in [3], we see that there exists \alpha > 0 such that

\alpha \| (vhn
, \mu hn

)\| \scrB D
\leqslant sup

(whn ,\eta hn )\in \BbbV hn

Re(\langle (\sansF + \sansT )(vhn , \mu hn), (whn , \eta hn)\rangle \Gamma )
\| (whn , \eta hn)\| \scrB D

\leqslant sup
(whn ,\eta hn )\in \BbbV hn

| \langle (\sansF + \sansT )(vhn , \mu hn), (whn , \eta hn)\rangle \Gamma | 
\| (whn , \eta hn)\| \scrB D

.

Using (4.32), we see that

\alpha \| (vhn
, \mu hn

)\| \scrB D
\leqslant sup

(whn ,\eta hn )\in \BbbV hn

| \langle \sansF (vhn
, \mu hn

), (whn
, \eta hn

)\rangle \Gamma | 
\| (whn

, \eta hn
)\| \scrB D

+ sup
(whn ,\eta hn )\in \BbbV hn

| \langle \sansT (vhn
, \mu hn

), (whn
, \eta hn

)\rangle \Gamma | 
\| (whn

, \eta hn
)\| \scrB D

\leqslant \tau n + sup
(whn ,\eta hn )\in \BbbV hn

| \langle \sansT (vhn
, \mu hn

), (whn
, \eta hn

)\rangle \Gamma | 
\| (whn

, \eta hn
)\| \scrB D

.

By the Cauchy--Schwarz inequality,

| \langle \sansT (vhn
, \mu hn

), (whn
, \eta hn

)\rangle \Gamma | \leqslant \| \sansT (vhn
, \mu hn

)\| \BbbV \| (whn
, \eta hn

)\| \BbbV 
\leqslant \| \sansT (vhn

, \mu hn
)\| \BbbV \| (whn

, \eta hn
)\| \scrB D

.

Let 0 < \epsilon < 1. Taking N1 \in \BbbN large enough so that \forall n > N1, \tau n < \epsilon 
2 , we see

that

\alpha \| (vhn
, \mu hn

)\| \scrB D
<

\epsilon 

2
+ \| \sansT (vhn

, \mu hn
)\| \BbbV .(4.33)

The bounded sequence (vhn , \mu hn) contains a weakly convergent subsequence
(\~vn, \~\mu n) that converges to (v0, \mu 0) \in \BbbV . This means that there exists N2 \in \BbbN such
that \forall n > N2,
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HELMHOLTZ WITH WEAKLY IMPOSED BOUNDARY CONDITIONS A2909

\| \sansT [(\~vn, \~\mu n) - (v0, \mu 0)]\| \BbbV \leqslant 
\epsilon 

2
.(4.34)

Let \delta > 0. Let (w, \eta ) \in \BbbV . The spaces \BbbV h are asymptotically dense in \BbbV , so there
exists h0 such that \forall h < h0, there exists (wh, \eta h) \in \BbbV h such that

(4.35) \| (w, \eta ) - (wh, \eta h)\| \BbbV < \delta .

Suppose that n is large enough that (\~vn, \~\mu n) \in \BbbV \~hn
with \~hn < h0.

Using (4.32), we see that

(\scrA + \scrB +
D)[(\~vn, \~\mu n), (w, \eta )]

= (\scrA + \scrB +
D)[(\~vn, \~\mu n), (w, \eta ) - (wh, \eta h)] + (\scrA + \scrB +

D)[(\~vn, \~\mu n), (wh, \eta h)]

< (\scrA + \scrB +
D)[(\~vn, \~\mu n), (w, \eta ) - (wh, \eta h)] + \~\tau n \| (wh, \eta h)\| \scrB D

,(4.36)

where \~\tau n represents the values in (4.32) corresponding to the subsequence (\~vn, \~\mu n).
Using Proposition 4.1 and (4.31), we see that

(\scrA + \scrB +
D)[(\~vn, \~\mu n), (w, \eta ) - (wh, \eta h)] \leqslant M \| (\~vn, \~\mu n)\| \scrB D

\| (w, \eta ) - (wh, \eta h)\| \scrB D

= M \| (w, \eta ) - (wh, \eta h)\| \scrB D
.(4.37)

Using the definition of \| \cdot \| \BbbV , we see that

\| (w, \eta ) - (wh, \eta h)\| \scrB D
= \| (w, \eta ) - (wh, \eta h)\| \BbbV + | \beta D| 1/2 \| w  - wh\| L2(\Gamma )

\leqslant \| (w, \eta ) - (wh, \eta h)\| \BbbV + | \beta D| 1/2 \| (w, \eta ) - (wh, \eta h)\| \BbbV 
= (1 + | \beta D| 1/2) \| (w, \eta ) - (wh, \eta h)\| \BbbV .

Using our assumption that | \beta D| \lesssim 1, i.e., | \beta D| \leqslant c for some constant c \in \BbbR , and (4.35),
we see that

\| (w, \eta ) - (wh, \eta h)\| \scrB D
\leqslant c \| (w, \eta ) - (wh, \eta h)\| \BbbV 
< c\delta .(4.38)

Combining (4.36)--(4.38), we see that

(\scrA + \scrB +
D)[(\~vn, \~\mu n), (w, \eta )] < M \prime \delta + \~\tau n \| (wh, \eta h)\| \scrB D

,(4.39)

where the M \prime = Mc is constant.
As | \beta D| \leqslant c,

\| (wh, \eta h)\| \scrB D
= \| (wh, \eta h)\| \BbbV + | \beta D| 1/2 \| wh\| L2(\Gamma )

\leqslant \| (wh, \eta h)\| \BbbV + c1/2 \| wh\| L2(\Gamma )

\leqslant c\prime \| (wh, \eta h)\| \BbbV 

for some constant c\prime \in \BbbR . Using the triangle inequality and (4.35), we obtain

\| (wh, \eta h)\| \BbbV \leqslant \| (w, \eta ) - (wh, \eta h)\| \BbbV + \| (w, \eta )\| \BbbV 
< \delta + \| (w, \eta )\| \BbbV ,(4.40)
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and so

(\scrA + \scrB +
D)[(\~vn, \~\mu n), (w, \eta )] < M \prime \prime \delta + c\prime \~\tau n \| (w, \eta )\| \BbbV ,(4.41)

where M \prime \prime = M \prime + c\prime \~\tau n. As \| (w, \eta )\| \BbbV is constant, it is possible to take n large enough
that \~\tau n < \delta / \| (w, \eta )\| \BbbV . Hence, we conclude that

lim
h\rightarrow 0

\bigl( 
(\scrA + \scrB +

D)[(\~vn, \~\mu n), (w, \eta )]
\bigr) 
= 0.

As this is true \forall (w, \eta ) \in \BbbV , it follows that

(\scrA + \scrB +
D)[(v0, \mu 0), (w, \eta )] = 0,

and so, by Proposition 4.7, we have that (v0, \mu 0) = 0 whenever | \beta D| \lesssim 1.
We therefore conclude using (4.33) and (4.34) that for any n > max(N1, N2),

\alpha \| (\~vn, \~\mu n)\| \scrB D
< \epsilon .

This contradicts (4.31).

Based on the results in [3] and the Nitsche formulations for other problems, we
would expect this coercivity result to hold for | \beta D| \lesssim h - 1, which is a wider range
of values than we have proven it for. When | \beta D| \lesssim h - 1 and | \beta D| \not \lesssim 1, the proof
can be modified to show that (4.39) still holds. However, when | \beta D| \eqsim h - 1 the term
\| (wh, \eta h)\| \scrB D

depends on h, and it is not necessarily possible to take \~\tau n small enough
to counter this, so this prevents us from completing the proof in this case. Note,
however, that the method is optimally convergent using the uniformly bounded \beta D,
so in practice there is no reason to use a stronger penalty parameter.

The coercivity result allows us to prove that the discrete problem is well-posed.

Proposition 4.14. If | \beta D| \lesssim 1 and k2 is not a Robin eigenvalue of the interior
Laplacian with Robin parameter \beta D, then there exists h0 \in \BbbR such that \forall h < h0, the
discrete problem (3.8) has a unique solution.

Proof. Suppose that (uh, \lambda h) and (u\prime 
h, \lambda 

\prime 
h) are two solutions of (3.8). Applying

Proposition 4.13 to (uh, \lambda h) - (u\prime 
h, \lambda 

\prime 
h), we see that

\alpha \| (uh, \lambda h) - (u\prime 
h, \lambda 

\prime 
h))\| \scrB D

\leqslant sup
(wh,\eta h)\in \BbbV h\setminus \{ 0\} 

\bigm| \bigm| (\scrA + \scrB +
D)[(uh, \lambda h) - (u\prime 

h, \lambda 
\prime 
h), (wh, \eta h)]

\bigm| \bigm| 
\| (wh, \eta h)\| \scrB D

.

As (uh, \lambda h) and (u\prime 
h, \lambda 

\prime 
h) are both solutions of (3.8), (\scrA + \scrB +

D)[(uh, \lambda h), (wh, \eta h)] =
(\scrA + \scrB +

D)[(u
\prime 
h, \lambda 

\prime 
h), (wh, \eta h)], and so

\alpha \| (uh, \lambda h) - (u\prime 
h, \lambda 

\prime 
h))\| \scrB D

\leqslant 0.

It follows from Proposition 4.7 that (uh, \lambda h) = (wh, \eta h), and so (3.8) has at most one
solution.

However, as (3.8) is a linear system with a square matrix, having at most one
solution implies that it has exactly one solution.

4.3. A priori error bounds. To prove our a priori error bounds, we will use
the following lemma.

Lemma 4.15. Assume that Re(\beta D) > 0, h < h0, and k2 is not a Robin eigenvalue
of the interior Laplacian with Robin parameter \beta D. Let (u, \lambda ) be the solution of (3.5),
and let (uh, \lambda h) be the solution of (3.8). If | \beta D| \lesssim 1, then
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HELMHOLTZ WITH WEAKLY IMPOSED BOUNDARY CONDITIONS A2911

\| (u - uh, \lambda  - \lambda h)\| \scrB D
\lesssim inf

(vh,\mu h)\in \BbbV h

\| (u - vh, \lambda  - \mu h)\| \scrB D
.

Proof. Let (vh, \mu h) \in \BbbV h. By the triangle inequality, we obtain

\| (u - uh, \lambda  - \lambda h)\| \scrB D
\leqslant \| (u - vh, \lambda  - \mu h)\| \scrB D

+ \| (uh  - vh, \lambda h  - \mu h)\| \scrB D
.(4.42)

Applying Proposition 4.13 to the second term on the right gives

\| (uh  - vh, \lambda h  - \mu h)\| \scrB D
\leqslant 

1

\alpha 
sup

(wh,\eta h)\in \BbbV h\setminus \{ 0\} 

\bigm| \bigm| (\scrA + \scrB +
D)[(uh  - vh, \lambda h  - \mu h), (wh, \eta h)]

\bigm| \bigm| 
\| (wh, \eta h)\| \scrB D

.

It follows from (3.5) and (3.8) that (\scrA +\scrB +
D)[(uh, \lambda h), (wh, \eta h)] = (\scrA +\scrB +

D)[(u, \lambda ), (wh, \eta h)],
and so

\| (uh  - vh, \lambda h  - \mu h)\| \scrB D
\leqslant 

1

\alpha 
sup

(wh,\eta h)\in \BbbV h\setminus \{ 0\} 

\bigm| \bigm| (\scrA + \scrB +
D)[(u - vh, \lambda  - \mu h), (wh, \eta h)]

\bigm| \bigm| 
\| (wh, \eta h)\| \scrB D

.

Applying Proposition 4.1 gives

\| (uh  - vh, \lambda h  - \mu h)\| \scrB D
\leqslant 

M

\alpha 
sup

(wh,\eta h)\in \BbbV h\setminus \{ 0\} 

\| (u - vh, \lambda  - \mu h)\| \scrB D
\| (wh, \eta h)]\| \scrB D

\| (wh, \eta h)\| \scrB D

=
M

\alpha 
\| (u - vh, \lambda  - \mu h)\| \scrB D

.(4.43)

Combining (4.42) and (4.43) and taking the infimum yields the desired result.

If \Gamma is a discretization of a smooth surface, then we can take \BbbV h = Pp
h(\Gamma )\times Pq

h(\Gamma )
as our discrete space. The following result gives the approximation properties of this
space.

Lemma 4.16 (approximation in Pp
h(\Gamma ) \times Pq

h(\Gamma )). If | \beta D| \lesssim h - 1, then \forall (v, \mu ) \in 
Hs(\Gamma )\times Hr(\Gamma ),

inf
(wh,\eta h)\in Pp

h(\Gamma )\times Pq
h(\Gamma )

\| (v  - wh, \mu  - \eta h)\| \scrB D
\lesssim h\zeta  - 1/2 | v| H\zeta 

pw(\Gamma )
+ h\xi +1/2 | \mu | H\xi 

pw(\Gamma )
,

where \zeta = min(p+ 1, s), \xi = min(q + 1, r), s \geqslant 1
2 and r \geqslant  - 1

2 .

Proof. This can be proved in the same way as [3, Proposition 4.14].

We can now prove the a priori error bound for \BbbV h = Pp
h(\Gamma )\times Pq

h(\Gamma ).

Theorem 4.17. Assume that h < h0, Re(\beta D) > 0, | \beta D| \lesssim 1, and k2 is not a
Robin eigenvalue of the interior Laplacian with Robin parameter \beta D. The solution,
(u, \lambda ) \in Hs(\Gamma )\times Hr(\Gamma ), of (3.5), and the solution, (uh, \lambda h) \in Pp

h(\Gamma )\times Pq
h(\Gamma ), of (3.8)

satisfy

\| (u - uh, \lambda  - \lambda h)\| \scrB D
\lesssim h\zeta  - 1/2 | u| H\zeta 

pw(\Gamma )
+ h\xi +1/2 | \lambda | H\xi 

pw(\Gamma )
,

where \zeta = min(p+ 1, s) and \xi = min(q + 1, r).

Proof. Combine Lemma 4.16 and Lemma 4.15.

When \Gamma is not smooth, the flux space must be adapted so that it can represent
jumps in the normal derivative between cells. In this case, we take \BbbV h = Pp

h(\Gamma ) \times 
DPq

h(\Gamma ). The following result gives the approximation properties of this space.
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Lemma 4.18 (approximation in Pp
h(\Gamma )\times DPq

h(\Gamma )). If | \beta D| \lesssim h - 1, then \forall (v, \mu ) \in 
Hs(\Gamma )\times Hr(\Gamma ),

inf
(wh,\eta h)\in Pp

h(\Gamma )\times DPq
h(\Gamma )

\| (v  - wh, \mu  - \eta h)\| \scrB D
\lesssim h\zeta  - 1/2 | v| H\zeta 

pw(\Gamma )
+ h\xi +1/2 | \mu | H\xi 

pw(\Gamma )
,

where \zeta = min(p+ 1, s), \xi = min(q + 1, r), s \geqslant 1
2 and r \geqslant  - 1

2 .

Proof. See [3, Proposition 4.14].

We can now prove the a priori error bound for \BbbV h = Pp
h(\Gamma )\times DPq

h(\Gamma ).

Theorem 4.19. Assume that h < h0, Re(\beta D) > 0, | \beta D| \lesssim 1, and k2 is not a
Robin eigenvalue of the interior Laplacian with Robin parameter \beta D. The solution,
(u, \lambda ) \in Hs(\Gamma ) \times Hr(\Gamma ), of (3.5), and the solution, (uh, \lambda h) \in Pp

h(\Gamma ) \times DPq
h(\Gamma ), of

(3.8) satisfy

\| (u - uh, \lambda  - \lambda h)\| \scrB D
\lesssim h\zeta  - 1/2 | u| H\zeta 

pw(\Gamma )
+ h\xi +1/2 | \lambda | H\xi 

pw(\Gamma )
,

where \zeta = min(p+ 1, s) and \xi = min(q + 1, r).

Proof. Combine Lemma 4.18 and Lemma 4.15.

Recall that due to Lemma 4.4, the Robin eigenvalue assumption in the results in
this section holds whenvever Im(\beta D) \not = 0.

5. Numerical results. In this section, we demonstrate the theory with a series
of numerical examples. All the results presented were computed using version 0.2.4 of
Bempp-cl, an open source Python BEM library [4]. We precondition all linear systems
in this section with blocked mass matrix preconditioners applied from the left. We
take \BbbV h = P1

h(\Gamma )\times P1
h(\Gamma ) throughout this section, so we use the preconditioner\biggl( 

M 0
0 M

\biggr) 
,

where M = (mij) is defined by

mij = \langle \phi j , \phi i\rangle \Gamma ,

where \{ \phi 0, \phi 1, . . .\} is the basis of the space P1
h(\Gamma ). The preconditioning corresponds

to taking the discrete strong form of the operator, as described in [5].
Define

gD(\bfitx ) =
eik| \bfitr 1| 

| \bfitr 1| 
+

eik| \bfitr 2| 

| \bfitr 2| 
,(5.1)

where \bfitr 1 = \bfitx  - ( 1
10 ,

1
2 ,

1
2 ) and \bfitr 2 = \bfitx  - ( 1

10 ,
1
4 ,

1
4 ). Let \Omega 

-- be a bounded domain such
that ( 1

10 ,
1
2 ,

1
2 ) \in \Omega -- and ( 1

10 ,
1
4 ,

1
4 ) \in \Omega --, and let \Omega + := \BbbR 3 \setminus \Omega --. It is easy to check

that for any wavenumber k > 0, u(\bfitx ) = eik| \bfitr 1| 

| \bfitr 1| + eik| \bfitr 2| 

| \bfitr 2| is the solution of the exterior

Helmholtz problem

 - \Delta u - k2u = 0 in \Omega +,(5.2a)

\partial uscat

\partial | \bfitx | 
 - ikuscat = o(| \bfitx |  - 1

) as | \bfitx | \rightarrow \infty ,(5.2b)

u = gD on \Gamma ,(5.2c)
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Fig. 1. The error (left) and GMRES iteration counts (right) of the penalty method with \beta D = 1
for the Helmholtz Dirichlet problem with varying k on the unit sphere with h = 2 - 2. Here we take
(uh, \lambda h), (vh, \mu h) \in P1

h(\Gamma )\times P1
h(\Gamma ) and solve to a GMRES tolerance of 10 - 5.

Fig. 2. The error (left) and GMRES iteration counts (right) of the penalty method with varying
real \beta D for the Helmholtz Dirichlet problem with k = 2.759 on the unit sphere with h = 2 - 2 (red
triangles), h = 2 - 3 (red diamonds), and h = 2 - 4 (red pentagons). Here we take (uh, \lambda h), (vh, \mu h) \in 
P1
h(\Gamma )\times P1

h(\Gamma ) and solve to a GMRES tolerance of 10 - 5.

with uinc = 0 (and so u = uscat). It can also be seen that

\partial u

\partial \bfitnu 
=

(ik | \bfitr 1|  - 1)eik| \bfitr 1| 

| \bfitr 1| 3
\bfitr 1 \cdot \bfitnu +

(ik | \bfitr 2|  - 1)eik| \bfitr 2| 

| \bfitr 2| 3
\bfitr 2 \cdot \bfitnu on \Gamma N.(5.3)

Using (5.1) and (5.3), we can compute the error of the solutions obtained in this
section.

Figure 1 shows how the error and number of GMRES iterations vary as k is
increased using \beta D = 1. It can be seen that at various points the number of iterations
and error grows as k approaches a problematic Robin eigenvalue of the problem: one
of these is near 2.759, as indicated by the dashed lines.

In section 4, we saw that our formulation can fail to have a unique solution when
k2 is Robin eigenvalues of the Laplacian with Robin parameter \beta D. This implies that
adjusting the parameter \beta D will adjust the locations of these eigenvalues. This can
be oberved in Figure 2, where the error and number of iterations are shown for the
problem with k = 2.759 and varying real \beta D. The spike in the error and number
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Fig. 3. The error (top) and GMRES iteration counts (bottom) of the penalty method with
varying \beta D with Re(\beta D) = 1 for the Helmholtz Dirichlet problem with k = 2.759 on the unit sphere
with h = 2 - 2 (red triangles), h = 2 - 3 (red diamonds), and h = 2 - 4 (red pentagons). Here we take
(uh, \lambda h), (vh, \mu h) \in P1

h(\Gamma )\times P1
h(\Gamma ) and solve to a GMRES tolerance of 10 - 5.

of iterations at \beta D = 1 (as shown by the dashed lines) is due to the approaching
same eigenvalue as we saw in Figure 1. We observe that the increase in the error is
less pronounced for meshes with a lower value of h. This is due to 2.759 being near
an eigenvalue of a given discretization of the sphere: the exact approximation of the
sphere changes a little as we increase the number of cells in the mesh, and so the
eigenvalues differ on the different meshes used.

As we saw in [3] for Laplace problems, we observe in Figure 2 that the error and
iteration counts for the problem increase once \beta D is increased above a certain level.

Figure 3 shows how the error and iteration counts vary as we adjust the imaginary
part of \beta D when the real part of \beta D is fixed as 1, again taking k = 2.759 so that we hit
an eigenvalue when Im(\beta D) = 0. We see that once | Im(\beta D)| is greater than around
10 - 2, the error and iteration count drop. Once | Im(\beta D)| is too large, the error and
iteration count rise in a similar way to that we observed when taking a large real \beta D.
We observe that the iteration count is slightly lower for a small range of values when
Im(\beta D) is negative.

Motivated by our observations in Figure 3, we fix \beta D = 1  - i. Figure 4 shows
how the error and iteration counts change as we increase k with this value of \beta D.
In agreement with Lemma 4.4, we observe that (in contrast to Figure 1) there is no
vulnerability to eigenvalues in this case, and the iteration count remains steady as we
increase k.
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Fig. 4. The error (left) and GMRES iteration counts (right) of the penalty method with \beta D =
1 - i for the Helmholtz Dirichlet problem with varying k on the unit sphere with h = 2 - 2. Here we
take (uh, \lambda h), (vh, \mu h) \in P1

h(\Gamma )\times P1
h(\Gamma ) and solve to a GMRES tolerance of 10 - 5.

Fig. 5. The error (left) and GMRES iteration counts (right) of the penalty method with \beta D =
1 - i for the Helmholtz Dirichlet problem with k = 3 on the unit sphere as we reduce h. The dashed
line shows order 2 convergence. Here we take (uh, \lambda h), (vh, \mu h) \in P1

h(\Gamma ) \times P1
h(\Gamma ) and solve to a

GMRES tolerance of 10 - 5.

Figure 5 shows the error and number of iterations as we reduce h. We observe
order 2 convergence, and see that the number of iterations remains the same as h is
reduced, demonstrating the effectiveness of the mass matrix preconditioner.

6. Conclusions. In this paper, we have derived and analyzed a formulation
for weak imposition of Dirichlet boundary conditions on the Helmholtz equation.
By taking a parameter with a nonzero imaginary part, Helmholtz problems can be
solved at any wavenumber without any difficulties caused by resonances of the interior
problem.

The formulation derived in this paper bears a close resemblance to the formula-
tions for Laplace that we derived and analyzed in [3]. Formulations for Helmholtz
problems with mixed Dirichlet--Neumann or Robin boundary conditions could be de-
rived in the same way. We expect that these formulations could be analyzed following
a similar method as used here, although this analysis appears to pose some additional
challenges. The weak imposition of mixed boundary conditions is demonstrated in
Figure 6, where we have plotted the scattering of an incident wave colliding with
a collection of sound-hard (a 0 Neumann boundary condition) and sound-soft (a 0
Dirichlet boundary condition) spheres.
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Fig. 6. The incident wave uinc = eik\bfitx \cdot \bfitd , where \bfitd = (0, 1, 0) and k = 2, scattering off 25
spheres. The white spheres are sound-hard and the black spheres are sound-soft.

One benefit of formulating mixed problems in this way is that the boundary
conditions are imposed by adding sparse terms to the full Calder\'on system: for
mixed boundary conditions, sparse terms assembled on parts of the boundary can
be added without any need to adjust the dense Calder\'on term. When solving an in-
verse problem---for example, when looking to find the material properties that should
be used to give a scatterer a certain desired property---the Calder\'on term (which is
the most expensive part to assemble) can be reused and different sparse terms added
to solve the same problem with different boundary conditions.

One avenue of interest for further interest would be the weak imposition of bound-
ary condition on Maxwell problems. In the experiments we have run to explore this,
however, we have been unable to obtain good solutions in a reasonable amount of
time. Maxwell problems are prone to being strongly ill-conditioned, and it appears
that mass matrix preconditioning is not enough to achieve good performance in the
Maxwell case. Therefore, we believe that it is necessary to design more powerful pre-
conditioners for these weak formulations in order to make this method feasible for
Maxwell problems.
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