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Summary
The finite element method (FEM) (Ciarlet, 1978) is a widely used numerical method for
approximating the solution of partial differential equations (PDEs). Solving a problem using
FEM involves discretising the problem and searching for a solution in a finite dimensional space:
these finite spaces are created by defining a finite element on each cell of a mesh.

Following Ciarlet (1978), a finite element is commonly defined by a triple (R,V,L), where:

• R is the reference cell, for example a triangle with vertices at (0,0), (1,0) and (0,1);
• V is a finite dimensional polynomial space, for example span{1, x, y, x2, xy, y2};
• L is a basis of the dual space {f : V → R | f is linear}, for example the set of functionals

that evaluate a function at the vertices of the triangle and at the midpoints of its edges.

The basis functions of the finite element are the polynomials in V such that one functional in
L gives the value 1 for that function and all other functionals in L give 0. The examples given
above define a degree 2 Lagrange space on a triangle; the basis functions of this space are
shown in Figure 1.

Figure 1: The six basis functions of a degree 2 Lagrange space on a triangle. The upper three
functions arise from point evaluations at the vertices. The lower three arise from point evaluations at
the midpoints of the edges. These diagrams are taken from DefElement (The DefElement contributors,
2021).

The functionals in L are each associated with a degree of freedom (DOF) of the finite element
space. Each functional (or DOF) is additionally associated with a sub-entity of the reference cell.
Ensuring that the same coefficients are assigned to the DOFs of neighbouring cells associated
with a shared sub-entity gives the finite element space the desired continuity properties.
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Basix is a C++ library that creates and tabulates a range of finite elements on triangles, tetra-
hedra, quadrilaterals, hexahedra, pyramids, and prisms. The majority of Basix’s functionality
can be used via its Python interface. A full list of currently supported elements is included
below.

For many elements, the functionals in L are defined to be integrals on a sub-entity of the cell.
Basix provides a range of quadrature rules to compute these integrals, including Gauss–Jacobi,
Gauss–Lobatto–Legendre, and Xiao–Gimbutas (Xiao & Gimbutas, 2010). Internally, Basix uses
xtensor (Mabille et al., 2021) for matrix and tensor storage and manipulation.

Basix forms part of FEniCSx alongside DOLFINx (Wells, Ballarin, et al., 2021), FFCx (Wells,
Baratta, et al., 2021), and UFL (Alnæs et al., 2014). FEniCSx is the latest development
version of FEniCS, a popular open source finite element project (Alnæs et al., 2015).

Statement of need
Basix allows users to:

• evaluate finite element basis functions and their derivatives at a set of points;
• access geometric and topological information about reference cells;
• apply push forward and pull back operations to map data between a reference cell and a

physical cell;
• permute and transform DOFs to allow higher degree elements to be used on arbitrary

meshes; and
• interpolate into a finite element space and between finite element spaces.

A full list of the built-in elements currently supported in Basix is included below. In addition
to these element, users can create their own custom elements via either C++ or Python.

Basix’s support for permuting and transforming DOFs is one of its key features. In an arbitrary
mesh, neighbouring cells will not necessarily agree on the orientation of shared sub-entities.
For higher degree elements, this will lead to a mismatch in the positioning and orientation of
the DOFs associated with these sub-entities, as shown in Figure 2. Our use of permuting and
transforming to rectify this issue is described in full detail in Scroggs et al. (2021).

Figure 2: Left: In a degree 4 Lagrange space on a triangle, there are three DOFs associated with each
edge. If two neighbouring triangles disagree on the orientation of a shared edge, then the positions
of the DOFs will not match up. Right: In a degree 1 Nédélec first kind element on a tetrahedron,
there are two DOFs associated with each triangular face. These DOFs will be associated with a vector
tangential to the face of the triangles. If two neighbouring cells do not agree on the orientation of the
triangle, then the directions of these vectors will not match.

In order to compute the basis functions of a finite element, each functional in L can be
applied to the elements of a basis of the polynomial set V to compute the dual matrix. This
dual matrix can then be inverted to obtain the coefficients that define the finite element
basis functions in terms of the basis of V. In NGSolve (Schöberl, 2014), the functionals for
this approach are implemented in C++ using lambda functions. In MFEM (Anderson et al.,
2021), the functionals are described in C++ using a set of points and weights: for point
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evaluation functionals, there will be one point and the weight will be 1; for integral functionals,
quadrature points and weights are used. In FIAT (Kirby, 2004) and Symfem (Scroggs, 2021),
the functionals are implemented as Python objects. In Basix, we follow an approach similar to
that taken by MFEM, and define the functionals in C++ using a set of points and weights.

In many other libraries—including Dune (Sander, 2020) and Bempp (Betcke & Scroggs, 2021;
Śmigaj et al., 2015)—the basis functions of the finite element space are implemented explicitly.

In a large number of finite element libraries—including NGSolve and MFEM—the finite element
definitions are included in the core of the library. In Dune, the finite element definitions are
separated into the dune-localfunctions module. FIAT and Basix are the finite element
definition and tabulations libraries used by legacy FEniCS and FEniCSx (respectively). Symfem
is a standalone element definition library that computes basis functions symbolically. By
separating the finite element definitions from the core of the code, users are able to tabulate
elements and obtain information about them without having to interact with the other
components of the library. In FEniCSx for example, this allows users who want to create
custom integration kernels to get information about elements from Basix without having to
extract information from the core of the full finite element library.

An additional advantage of this modular approach is that it allows us to adjust how elements are
implemented and add new elements without needing to make changes to the other components
of FEniCSx.

For some high degree finite elements on tensor product cells (quadrilaterals and hexahedra),
elements can be more efficiently tabulated using sum factorisation: the elements can be
represented as the product of elements defined on an interval, and so can be tabulated by
combining copies of tabulated data on an interval rather than tabulating on the full cell. This
tensor product evaluation is implemented in MFEM, FInAT (Homolya et al., 2017) and deal.ii
(Bangerth et al., 2007). We have experimented with supporting these factorisations in Basix:
in particular, details of the factorisations for Lagrange elements are currently provided by the
library. We plan to support them more fully and for a wider range of elements in a future
release.

The Python library FIAT (Kirby, 2004) (which is part of the legacy FEniCS library alongside
UFL, FFC (Logg et al., 2012) and DOLFIN (Logg & Wells, 2010)) serves a similar purpose to
Basix and can perform many of the same operations (with the exception of permutations and
transformations) on triangles, tetrahedra, quadrilaterals, and hexahedra. As FIAT is written in
Python, the FFC library would use the information from FIAT to generate code that could be
used by the C++ finite element library DOLFIN.

An advantage of using Basix is the ability to call functions from C++ at runtime. This has
allowed us to greatly reduce the amount of code generated in FFCx compared to FFC, as well
as simplifying much of the implementation, while still allowing FFCx to access the information
it needs using Basix’s Python interface.

Supported elements

Interval
In Basix, the sub-entities of the reference interval are numbered as shown in Figure 3. The
following elements are supported on an interval:

• Lagrange
• bubble
• serendipity (Arnold & Awanou, 2011)
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Figure 3: The numbering of a reference interval.

Triangle
In Basix, the sub-entities of the reference triangle are numbered as shown in Figure 4. The
following elements are supported on a triangle:

• Lagrange
• Nédélec first kind (Nédélec, 1980)
• Raviart–Thomas (Raviart & Thomas, 1977)
• Nédélec second kind (Nédélec, 1986)
• Brezzi–Douglas–Marini (Brezzi et al., 1985)
• Regge (Christiansen, 2011; Regge, 1961)
• Hellan–Herrmann–Johnson (Arnold & Walker, 2020)
• Crouzeix–Raviart (Crouzeix & Raviart, 1973)
• bubble

Figure 4: The numbering of a reference triangle.

Quadrilateral
In Basix, the sub-entities of the reference quadrilateral are numbered as shown in Figure 5.
The following elements are supported on a quadrilateral:

• Lagrange
• Nédélec first kind
• Raviart–Thomas
• Nédélec second kind (Arnold & Awanou, 2014)
• Brezzi–Douglas–Marini (Arnold & Awanou, 2014)
• bubble
• DPC
• serendipity

Figure 5: The numbering of a reference quadrilateral.

Tetrahedron
In Basix, the sub-entities of the reference tetrahedron are numbered as shown in Figure 6. The
following elements are supported on a tetrahedron:

• Lagrange
• Nédélec first kind
• Raviart–Thomas
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• Nédélec second kind
• Brezzi–Douglas–Marini
• Regge
• Crouzeix–Raviart
• bubble

Figure 6: The numbering of a reference tetrahedron.

Hexahedron
In Basix, the sub-entities of the reference hexahedron are numbered as shown in Figure 7. The
following elements are supported on a hexahedron:

• Lagrange
• Nédélec first kind
• Raviart–Thomas
• Nédélec second kind
• Brezzi–Douglas–Marini
• bubble
• DPC
• serendipity

Figure 7: The numbering of a reference hexahedron.

Prism
In Basix, the sub-entities of the reference prism are numbered as shown in Figure 8. The
following elements are supported on a prism:

• Lagrange

Figure 8: The numbering of a reference prism.

Pyramid
In Basix, the sub-entities of the reference pyramid are numbered as shown in Figure 9. The
following elements are supported on a pyramid:
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• Lagrange

Figure 9: The numbering of a reference pyramid.
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