
Bempp-cl: A fast Python based just-in-time compiling
boundary element library.
Timo Betcke1 and Matthew W. Scroggs2

1 Department of Mathematics, University College London 2 Department of Engineering, University
of Cambridge

DOI: 10.21105/joss.02879

Software
• Review
• Repository
• Archive

Editor: Marie E. Rognes
Reviewers:

• @jamtrott
• @ramisetti

Submitted: 14 September 2020
Published: 19 March 2021

License
Authors of papers retain
copyright and release the work
under a Creative Commons
Attribution 4.0 International
License (CC BY 4.0).

Summary

The boundary element method (BEM) is a numerical method for approximating the solu-
tion of certain types of partial differential equations (PDEs) in homogeneous bounded or
unbounded domains. The method finds an approximation by discretising a boundary integral
equation that can be derived from the PDE. The mathematical background of BEM is covered
in, for example, Steinbach (2008) or McLean (2000). Typical applications of BEM include
electrostatic problems, and acoustic and electromagnetic scattering.
Bempp-cl is an open-source boundary element method library that can be used to assemble all
the standard integral kernels for Laplace, Helmholtz, modified Helmholtz, and Maxwell prob-
lems. The library has a user-friendly Python interface that allows the user to use BEM to solve
a variety of problems, including problems in electrostatics, acoustics and electromagnetics.
Bempp-cl began life as BEM++, and was a Python library with a C++ computational core.
The ++ slowly changed into pp as functionality gradually moved from C++ to Python with
only a few core routines remaining in C++. Bempp-cl is the culmination of efforts to fully
move to Python, and is an almost complete rewrite of Bempp.
For each of the applications mentioned above, the boundary element method involves ap-
proximating the solution of a partial differential equation (Laplace’s equation, the Helmholtz
equation, and Maxwell’s equations respectively) by writing the problem in boundary inte-
gral form, then discretising. For example, we could calculate the scattered field due to an
electromagnetic wave colliding with a series of screens by solving

∇×∇×E− k2E = 0,

ν ×E = 0 on the screens,

where E is the sum of a scattered field Es and an incident field Einc, and ν is the direction
normal to the screen. (Additionally, we must impose the Silver–Müller radiation condition to
ensure that the problem has a unique solution.) This problem is solved, and the full method
is derived, in one of the tutorials available on the Bempp website (Betcke & Scroggs, 2020a).
The solution to this problem is shown below.

Betcke et al., (2021). Bempp-cl: A fast Python based just-in-time compiling boundary element library.. Journal of Open Source Software,
6(59), 2879. https://doi.org/10.21105/joss.02879

1

https://doi.org/10.21105/joss.02879
https://github.com/openjournals/joss-reviews/issues/2879
https://github.com/bempp/bempp-cl
https://doi.org/10.5281/zenodo.4618621
http://marierognes.org
https://github.com/jamtrott
https://github.com/ramisetti
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.21105/joss.02879


Figure 1: An electromagnetic wave scattering off three screens.

Statement of need

Bempp-cl provides a comprehensive collection of routines for the assembly of boundary integral
operators to solve a wide range of relevant application problems. It contains an operator alge-
bra that allows a straight-forward implementation of complex operator preconditioned systems
of boundary integral equations (Betcke et al., 2020) and in particular implements everything
that is required for Calderón preconditioned Maxwell (Scroggs et al., 2017) problems. Bempp-
cl uses PyOpenCL (Klöckner et al., 2012) to just-in-time compile its computational kernels
on a wide range of CPU and GPU devices and modern architectures. Alternatively, a fallback
Numba implementation is provided.
OpenCL is used as it is able to compile C-based kernels to run on a wide range of CPU
and GPU devices, without the need to write device specific code. Numba is offered as an
alternative as it is easily available on all platforms and provides a version of the library that is
significantly faster than using pure Python.
Bempp-cl is aimed at those interested in using boundary element method to solve problems,
particularly those from a mathematical background. The syntax of the library is designed to
closely resemble the boundary integral representation of the problem being solved, making the
implementation of a problem simple once this representation is known.
There are only a small number of alternative boundary element method softwares available.
The most popular is BETL (Hiptmair & Kielhorn, n.d.), a C++ template library that is
available for free for academic use only. As a Python library, Bempp-cl is easier to interface
with other popular libraries with Python interfaces—for example, is can be used alongside the
finite element method library FEniCS (Logg et al., 2012) to solve coupled finite and boundary
element problems (Betcke & Scroggs, 2021 (accessed 18 February 2021)). Bempp-cl also
benefits from being fully open source library and available under an MIT license. A number
of other libraries exist designed for specific applications, such as PyGBe for biomolecular
electrostatics (Cooper et al., 2016) and abem for acoustics (Jargstorff, n.d.). Bempp-cl can
be used for a much wider range of problems than these specialised libraries.

An overview of Bempp features

Bempp-cl is divided into two parts: bempp.api and bempp.core. The user interface of the
library is contained in bempp.api. The core assembly routines of the library are contained in

Betcke et al., (2021). Bempp-cl: A fast Python based just-in-time compiling boundary element library.. Journal of Open Source Software,
6(59), 2879. https://doi.org/10.21105/joss.02879

2

https://doi.org/10.21105/joss.02879


bempp.core. The majority of users of Bempp-cl are unlikely to need to directly interact with
the functionality in bempp.core.
There are five main steps that are commonly taken when solving a problem with BEM:

1. First a surface grid (or mesh) must be created on which to solve the problem.
2. Finite dimensional function spaces are defined on this grid.
3. Boundary integral operators acting on the function spaces are defined.
4. The operators are discretised and the resulting linear systems solved.
5. Domain potentials and far field operators can be used to evaluate the solution away

from the boundary.

Bempp-cl provides routines that implement each of these steps.

Grid Interface

The submodule bempp.api.shapes contains the definitions of a number of shapes. From
these, grids with various element sizes can be created internally using Gmsh (Geuzaine &
Remacle, 2009). Alternatively, meshes can be imported from many formats using the meshio
library (Schlömer & contributors, n.d.). Bempp-cl currently only supports flat triangle based
surface meshes. Higher-order triangular meshes may be supported in the future.

Function Spaces

Bempp-cl provides piecewise constant and piecewise linear (continuous and discontinuous)
function spaces for solving scalar problems. For Maxwell problems, Bempp-cl can create
Rao–Wilton–Glisson (Rao et al., 1982) div-conforming spaces and Nédélec (Nédélec, 1980)
curl-conforming spaces. In addition to these, Bempp-cl can also generate constant and linear
spaces on the barycentric dual grid as well as Buffa–Christiansen div-conforming spaces, as
described in Buffa & Christiansen (2007). These spaces can all be created using the bempp.
api.function_space command.

Boundary operators

Boundary operators for Laplace, Helmholtz, modified Helmholtz and Maxwell problems can
be found in the bempp.api.operators.boundary submodule, as well as sparse identity
operators. For Laplace and Helmholtz problems, Bempp-cl can create single layer, double
layer, adjoint double layer and hypersingular operators. For Maxwell problems, both electric
field and magnetic field operators can be used.

Discretisation and solvers

Operators are assembled using OpenCL or Numba based dense assembly, or via interface to
fast multipole methods. Internally, Bempp-cl uses PyOpenCL (Klöckner et al., 2012) to just-
in-time compile its operator assembly routines on a wide range of CPU and GPU compute
devices. On systems without OpenCL support, Numba (Lam et al., 2015) is used to just-
in-time compile Python-based assembly kernels, giving a slower but still viable alternative to
OpenCL.
Bempp-cl provides an interface to the Exafmm-t library (Wang et al., 2020) for faster assembly
of larger problems with lower memory requirements using the fast multipole method (FMM).

Betcke et al., (2021). Bempp-cl: A fast Python based just-in-time compiling boundary element library.. Journal of Open Source Software,
6(59), 2879. https://doi.org/10.21105/joss.02879

3

https://doi.org/10.21105/joss.02879


The interface to Exafmm-t is written in a generic way so that other FMM libraries or alternative
matrix compression techniques could be used in future.
The submodule bempp.api.linalg contains wrapped versions of SciPy’s (Jones et al., 2001)
LU, CG, and GMRes solvers. By using SciPy’s LinearOperator interface, Bempp-cl’s bound-
ary operators can easily be used with other iterative solvers.

Potential and far field operators

Potential and far field operators for the evaluation at points in the domain or the asymptotic
behavior at infinity are included in the bempp.api.operators.potential and bempp.api
.operators.far_field submodules.

Further information

Full documentation of the library, including a number of example Jupyter notebooks, can be
found online at bempp.com and in the in-development Bempp Handbook (Betcke & Scroggs,
2020b).

Acknowledgements

We would like to thank the Exafmm team (Wang et al., 2020), and here in particular Lorena
Barba and Tingyu Wang for their efforts to integrate Exafmm-t into Bempp-cl. We further
thank the HyENA team (Messner et al., 2020) at Graz University of Technology who provided
C++ definitions of core numerical quadrature rules, which were translated to Python as part
of the development effort for Bempp-cl.

References

Betcke, T., & Scroggs, M. W. (2020a). Bempp tutorial: Electromagnetic scattering from flat
screens. https://nbviewer.jupyter.org/github/bempp/bempp-cl/blob/master/notebooks/
maxwell/maxwell_screen.ipynb

Betcke, T., & Scroggs, M. W. (2020b). The Bempp handbook. https://bempp.com/
handbook/

Betcke, T., & Scroggs, M. W. (2021 (accessed 18 February 2021)). Simple FEM-BEM
coupling for the Helmholtz equation with FEniCSx.

Betcke, T., Scroggs, M. W., & Śmigaj, W. (2020). Product algebras for Galerkin discretisa-
tions of boundary integral operators and their applications. ACM Transactions on Math-
ematical Software, 46(1, 46), 4:1–4:22. https://doi.org/10.1145/3368618

Buffa, A., & Christiansen, S. H. (2007). A dual finite element complex on the barycentric re-
finement. Mathematics of Computation, 76(260), 1743–1769. https://doi.org/10.1016/
j.crma.2004.12.022

Cooper, C. D., Clementi, N. C., Forsyth, G., & Barba, L. A. (2016). PyGBe: Python, GPUs
and boundary elements for biomolecular electrostatics. Journal of Open Source Software,
1(4), 43. https://doi.org/10.21105/joss.00043

Geuzaine, C., & Remacle, J.-F. (2009). Gmsh: A three-dimensional finite element mesh gen-
erator with built-in pre- and post-processing facilities. International Journal for Numerical
Methods in Engineering, 79(11)), 1309–1331. https://doi.org/10.1002/nme.2579

Betcke et al., (2021). Bempp-cl: A fast Python based just-in-time compiling boundary element library.. Journal of Open Source Software,
6(59), 2879. https://doi.org/10.21105/joss.02879

4

https://nbviewer.jupyter.org/github/bempp/bempp-cl/blob/master/notebooks/maxwell/maxwell_screen.ipynb
https://nbviewer.jupyter.org/github/bempp/bempp-cl/blob/master/notebooks/maxwell/maxwell_screen.ipynb
https://bempp.com/handbook/
https://bempp.com/handbook/
https://doi.org/10.1145/3368618
https://doi.org/10.1016/j.crma.2004.12.022
https://doi.org/10.1016/j.crma.2004.12.022
https://doi.org/10.21105/joss.00043
https://doi.org/10.1002/nme.2579
https://doi.org/10.21105/joss.02879


Hiptmair, R., & Kielhorn, L. (n.d.). BETL – a generic boundary element template library
(No. 2012-36). Seminar for Applied Mathematics, ETH Zürich. ftp://ftp.sam.math.ethz.
ch/pub/sam-reports/reports/reports2012/2012-36.pdf

Jargstorff, F. (n.d.). Acoustic boundary element method (abem). https://github.com/
fjargsto/abem

Jones, E., Oliphant, T., Peterson, P., & others. (2001). SciPy: Open source scientific tools
for Python. http://www.scipy.org/

Klöckner, A., Pinto, N., Lee, Y., Catanzaro, B., Ivanov, P., & Fasih, A. (2012). PyCUDA
and PyOpenCL: A scripting-based approach to GPU run-time code generation. Parallel
Computing, 38(3), 157–174. https://doi.org/10.1016/j.parco.2011.09.001

Lam, S. K., Pitrou, A., & Seibert, S. (2015). Numba: A LLVM-based Python JIT compiler.
Proceedings of the Second Workshop on the LLVM Compiler Infrastructure in HPC. https:
//doi.org/10.1145/2833157.2833162

Logg, A., Mardal, K.-A., Wells, G. N., & others. (2012). Automated solution of dif-
ferential equations by the finite element method. Springer. https://doi.org/10.1007/
978-3-642-23099-8

McLean, W. (2000). Strongly elliptic systems and boundary integral equations (p. xiv+357).
Cambridge University Press.

Messner, M., Urthaler, P., & Rammerstorfer, F. (2020). HyENA: Hyperbolic and elliptic
numerical analysis. https://www.tugraz.at/en/institutes/am-bm/research/software/

Nédélec, J.-C. (1980). Mixed finite elements in R3. Numerische Mathematik, 35(3), 315–341.
https://doi.org/10.1007/BF01396415

Rao, S. M., Wilton, D. R., & Glisson, A. W. (1982). Electromagnetic scattering by surfaces
of arbitrary shape. IEEE Transactions on Antennas and Propagation, 30(3), 409–418.
https://doi.org/10.1109/TAP.1982.1142818

Schlömer, N., & contributors, other. (n.d.). Meshio: I/O for mesh files. https://github.com/
nschloe/meshio

Scroggs, M. W., Betcke, T., Burman, E., Śmigaj, W., & Wout, E. van ’t. (2017). Soft-
ware frameworks for integral equations in electromagnetic scattering based on calderón
identities. Computers & Mathematics with Applications, 74(11), 2897–2914. https:
//doi.org/10.1016/j.camwa.2017.07.049

Steinbach, O. (2008). Numerical approximation methods for elliptic boundary value problems
(p. xii+386). Springer-Verlag. https://doi.org/10.1007/978-0-387-68805-3

Wang, T., Yokota, R., & Barba, L. A. (2020). Exafmm-t. Submitted to Journal of Open
Source Software.

Betcke et al., (2021). Bempp-cl: A fast Python based just-in-time compiling boundary element library.. Journal of Open Source Software,
6(59), 2879. https://doi.org/10.21105/joss.02879

5

ftp://ftp.sam.math.ethz.ch/pub/sam-reports/reports/reports2012/2012-36.pdf
ftp://ftp.sam.math.ethz.ch/pub/sam-reports/reports/reports2012/2012-36.pdf
https://github.com/fjargsto/abem
https://github.com/fjargsto/abem
http://www.scipy.org/
https://doi.org/10.1016/j.parco.2011.09.001
https://doi.org/10.1145/2833157.2833162
https://doi.org/10.1145/2833157.2833162
https://doi.org/10.1007/978-3-642-23099-8
https://doi.org/10.1007/978-3-642-23099-8
https://www.tugraz.at/en/institutes/am-bm/research/software/
https://doi.org/10.1007/BF01396415
https://doi.org/10.1109/TAP.1982.1142818
https://github.com/nschloe/meshio
https://github.com/nschloe/meshio
https://doi.org/10.1016/j.camwa.2017.07.049
https://doi.org/10.1016/j.camwa.2017.07.049
https://doi.org/10.1007/978-0-387-68805-3
https://doi.org/10.21105/joss.02879

	Summary
	Statement of need
	An overview of Bempp features
	Grid Interface
	Function Spaces
	Boundary operators
	Discretisation and solvers
	Potential and far field operators
	Further information

	Acknowledgements
	References

