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The Bempp boundary element library is a well-known library for the simulation of a
range of electrostatic, acoustic, and electromagnetic problems in homogeneous
bounded and unbounded domains. It originally started as a traditional C++ library with
a Python interface. Over the last two years, we have completely redesigned Bempp as a
native Python library, called Bempp-cl, that provides computational backends for
OpenCL (using PyOpenCL) and Numba. The OpenCL backend implements kernels for
GPUs and CPUs with SIMD optimization. In this article, we discuss the design of
Bempp-cl, provide performance comparisons on different compute devices, and
discuss the advantages and disadvantages of OpenCL as compared to Numba.

The Bempp boundary element library (originally
named BEM++) started in 2011 as a project to
develop an open-source C++ library for the fast

solution of boundary integral equations. The original
release came with a simple Python wrapper to the C++
library.1 Over time, more and more functionality was
moved into the Python interface, while computationally
intensive routines and the main data structures
remained in C++. At the end of 2019, we completed the
main steps of a full rewrite of Bempp and released the
first version (0.1) of Bempp-cl. This was followed later in
2020 by version 0.2, the first release that we considered
feature complete and mature for application use.2

Since then we have used Bempp-cl in a number of prac-
tical applications and many of our users are migrating
to it from the old C++ based Bempp. In this article, we
discuss the motivation for the rewrite and restructure
of Bempp and the reasoning behind the design choices
we made when writing Bempp-cl.

THE THREE LANGUAGE PROBLEM
The original BEM++ was troubled by what is often called
the two language problem. It is common for programming
language to be either easy for humans to write (e.g.,

Python) or easy for computers to run and achieve high
performance (e.g., C++). It is not common, however, for
a language to do both of these. Due to this, it is com-
mon in scientific computing libraries to write a library in
a fast low-level language such as C++, while providing a
user interface in a higher level language such as Python.

This was the model followed by BEM++, but the
problem would perhaps better be described as a three
language problem: as well as the Python and C++
code contained in libraries like this, it is common to
also include a significant amount of code in a third
interfacing language. In the case of BEM++, this third
language was first Swig and later Cython, an extension
of Python with C data types that can be compiled to
include functionality from C++ libraries.

Due to the three languages involved, making
changes to the library would often mean having to
duplicate changes in three places, with many class
structures duplicated in all three languages. This
made seemingly simple changes into onerous tasks,
and provided a barrier to new members of the com-
munity looking to contribute to the open-source
project.

DELEGATING COMPUTATIONS
WITH PYOPENCL

Prompted by a desire to simplify the library as well as
to be able to run on a wide range of CPU and GPU
devices, we began a full rewrite in 2018, which led to
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Bempp-cl. The aims of this rewrite were to support
explicit single-instruction-multiple-data (SIMD) optimi-
zation on CPUs with various instruction lengths, be
able to offload computations to AMD, Intel, and Nvidia
GPUs, and to base the complete codebase on Python.
These aims naturally led to the choice of building a
Python library based around OpenCL (using the PyO-
penCL interface) and Numba.

In addition to the performance benefits, the library
redesign has greatly improved the issues related to the
three language problem. Both OpenCL and Numba are
used to compile functions. Each function is provided all
the data it needs as inputs, so there is no need to dupli-
cate any class structure outside Python. The need for a
third interfacing language is removed, as the interfac-
ing to the OpenCL kernels is handled by PyOpenCL.

Boundary element methods (BEM) are particularly
suited to this library model, as the main performance
critical task is the computation of discrete operators.
Once fast kernels for this have been implemented, the
remaining functionality of the library can be written
entirely in Python without any significant decrease in
performance.

We begin this article by giving an overview of the
BEM, and looking at how Bempp can be used to imple-
ment such problems. Following this, we discuss the
implementation of boundary element kernels using
OpenCL in more detail, and provide a number of per-
formance benchmarks on different compute devices,
including CPUs and Nvidia GPUs. We conclude with
some thoughts on the advantages and disadvantages
of OpenCL and Numba.

BEMWITH BEMPP
In this section, we provide a brief introduction to BEM
and describe the necessary steps for their numerical
discretization and solution.

The most simple boundary integral equation is of
the form

Z
G

gðxx; yyÞfðyyÞdsyy ¼ fðxxÞ; xx 2 G: (1)

The function gðxx; yyÞ is a Green’s function, f is a given
right-hand side, and f is an unknown surface density
over the boundary G of a bounded three-dimensional
(3-D) domain V � R3.

As a concrete example, we consider computing
the electrostatic capacity of an object V. In this case,
we solve the above equation with fðxxÞ ¼ 1 and
gðxx; yyÞ ¼ 1

4pjxx�yyj . Once f has been found, the normal-
ized capacity is then obtained using c ¼ 1

4p

R
G fðxxÞdsxx.

Many practical problems have a significantly more
complex structure and can involve block systems of
integral equations or even coupling with finite element
(FEM) codes. Nevertheless, the fundamental structure
of what Bempp-cl does is well described using the
above simple problem.

The first step is the discretization of the surface G.
Surfaces are represented in Bempp-cl as a triangula-
tion into flat triangles (see Figure 1). The triangulation
is internally represented as an array of node coordi-
nates and an associated connectivity array of node
indices that define each triangle. In this step, topology
data are also computed: in particular, for each triangle,
we compute the neighboring triangles and the type of
intersection (i.e., are they connected by an edge or a
vertex, see Figure 2).

Once a triangulation is given, we need to define the
necessary data structures for the discretization.
Bempp-cl uses a Galerkin discretization: we introduce
a set of basis functions f1 to fN , and define the trial
space as the span of these functions. We then approx-
imate the solution f of (1) by fh ¼ PN

j¼1 xjfj, where x

is a vector of coefficients. In the most simple case, we
can define the function fj to be equal to 1 on the trian-
gle tj and 0 everywhere else. Other spaces are com-
monly defined to be piecewise polynomials on each
triangle.

To discretize (1), we define a test (or dual) space in
terms of a basis c1 to cN . The discrete representation
of the above problem then takes the form

Ax ¼ b

with

Aij ¼
Z
G

ciðxxÞ
Z
G

gðxx; yyÞfjðyyÞ dsyy dsxxbi

¼
Z
G

ciðxxÞfðxxÞdsxx:

FIGURE 1. Discretization of a sphere into flat surface triangles.
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In the case of piecewise constant trial and test func-
tions, the definition of Aij simplifies to Aij ¼

R
tiR

tj
gðxx; yyÞdsyy dsxx.
In Bempp-cl, an operator definition consists of the

type of the operator (e.g., Laplace single-layer in the
above example), the definition of the trial and test
spaces, and the definition of the range space. The
range space is required for operator products and not
relevant for the purpose of this article. The function f

is represented as a grid function object, which con-
sists of either the dual representation in the forms of
the integrals bi ¼

R
G ciðxxÞfðxxÞdsxx or directly through

its coefficients fj in the representation f ¼ PN
j¼1 fjfj.

Once the grid, the spaces, and the operator(s) are
defined, the main computational step is performed,
namely the computation of the discrete matrix
entries Aij. For pairs of triangles ti and tj that do not
share a joint edge or vertex, this is done through a sim-
ple numerical quadrature rule such as a symmetric
Gauss rule for triangles. In the case that two triangles
share a joint vertex/edge or the triangles ti and tj are
identical (see Figure 2), corresponding singular quad-
rature rules are used that are based on singularity-
removing coordinate transformations.3

The values bi of the right-hand side vector b are
similarly computed through a numerical quadrature
rule.

In the final step, Bempp-cl solves the underlying
linear system of equations either through a direct LU
decomposition or through iterative solvers. The solu-
tion can then be evaluated away from the surface G

through domain potential operators and exported in
various formats for visualization.

In summary, to solve a boundary integral equation
problem, the following steps are performed byBempp-cl:

1) Import of the surface description as triangula-
tion data.

2) Definition of function spaces and relevant
operators.

3) Discretization into a matrix problem Ax ¼ b.
4) Solution of the matrix problem by either a direct

or iterative solver.
5) Evaluation of domain potential operators for

visualization and postprocessing.

All of these steps are accelerated through the use
of either Numba or OpenCL. In the following section,
we provide a high-level overview of the library and
how these acceleration techniques are deployed
before we dive into the design of the computational
kernels.

A HIGH-LEVEL OVERVIEWOF
BEMPP-CL

The main user-visible component of Bempp-cl is
the module bempp.api, which defines all user interface
functions and other high-level routines. In particular, it
contains the definitions of the main object types:
Grid, Space, GridFunction, and Operator. The computational
backend routines are contained in the module bempp.

core. Currently, we support Numba and OpenCL back-
ends. An overview of this structure is provided in
Figure 3.

The main computational cost involved in solving a
problem using BEM is due to discretizing the boundary

FIGURE 2. The four types of intersection of two triangles: The triangles can be (left to right) not neighbors, neighbors adjacent

via a vertex, neighbors adjacent via an edge, or the same triangle. In the first case, standard quadrature is used. In the other

three cases, singular quadrature rules must be used.

FIGURE 3. The layout of Bempp-cl with its computational

backends.
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integral operator on the left-hand side of Equation (1)
to obtain the matrix A: using dense methods, discre-
tizing an operator has quadratic complexity in terms
of the number of surface triangles. For larger prob-
lems, this cost can be reduced through approximation
techniques, such as hierarchical (H-) matrices or fast
multipole methods (FMM) with log-linear or even lin-
ear complexity. The price of the improved complexity
is significantly more involved data structures and addi-
tional approximation errors. Bempp-cl provides inter-
faces to ExaFMM4 for large problems. Here, we focus
on dense discretization that is natively implemented
in Bempp-cl and is suitable for medium sized problems
up to a few ten thousand elements, depending on
available memory. Great care needs to be taken to
ensure that the quadratic complexity operator assem-
bly routines perform as efficiently as possible.

Once a user has defined an operator using Bempp-
cl, the discretization can be computed by calling the
weak_form method. Upon calling this method, a regular
integrator will be used to assemble all the interactions
between nonadjacent elements, and a singular inte-
grator will be used to compute the interactions
between adjacent triangles (if the trial and test spaces
are defined on different grids, this second integrator is
not needed). Depending on the user’s preferences,
these integrators will internally use computational
routines defined using either Numba or OpenCL.

For OpenCL assembly, the code checks additional
parameters, such as the default vector length for
SIMD operators (e.g., 4 for double precision and 8 for
single precision in Intel AVX, or 1 if a GPU is used), and
whether the discretization should proceed in single or
double precision. The OpenCL kernel is then compiled
for the underlying compute device using PyOpenCL
and executed. If the computational backend is
Numba, the call is forwarded to the corresponding
Numba discretization routines and executed.

For simple piecewise constant function spaces or
other spaces, where the support of each basis func-
tion is localized to a single triangle, only one call to the
computational routines is necessary. If the support of
basis functions is larger than a single triangle, different
threads may need to sum into the same global degree
of freedom.

Outside the operator discretization, Numba is used
in the following contexts:

› Computing the grid topology: this involves iterat-
ing through the grid to compute the neighbor
relationships between triangles.

› Definition of local-to-global maps for function
spaces: again, this requires traversal through the

grid and assigning relationships between global
and local indices.

› Grid functions: a right-hand side function f can
be defined as a Python callable. This is just-in-
time compiled via Numba and then the product
with the corresponding basis functions is inte-
grated in each triangle via numerical quadrature,
again via Numba accelerated routines.

› Computing sparse matrix entries, such as for
mass matrices that are required to translate
between representations of grid functions
through basis coefficients or projections, or
when we want to evaluate operator products.

As the cost of each of these processes is in general
much smaller than the cost of operator discretization,
these can be performed using Numba without any
need to consider the use of OpenCL for potential fur-
ther speed up.

ASSEMBLING BOUNDARY
INTEGRAL OPERATORSWITH
OPENCL

In this section, we discuss in more detail the assembly
of boundary integral operators with OpenCL and how
we integrated this into our Python workflow. We start
with a brief introduction to OpenCL and then dive into
how we use OpenCL as part of Bempp-cl.

What is OpenCL?
OpenCL5 is a heterogeneous compute standard for
CPUs, GPUs, FPGAs, and other types of devices that
provide conformant drivers. At its core, OpenCL exe-
cutes compute kernels that can be written in OpenCL
C, which is based on C99, or (more recently) in C++,
with some restrictions on the allowed operations. The
current version of OpenCL is 3.0, though the most
widely implemented standard is OpenCL 1.2, which
Bempp-cl uses.

OpenCL splits computational tasks into work-
items, each of which represents a single execution of
a compute kernel. Work-items are grouped together
into work-groups, which share local memory. Barrier
synchronization is only allowed within a work-group.
All work-items are uniquely indexed by a one, two, or
3-D index space, called NDRange. Kernels are launched
onto a compute device (e.g., a CPU or GPU) from a
host device. OpenCL allows kernels to be loaded as
strings and compiled on-the-fly for a given device,
making it well suited for launching from high-produc-
tivity languages.
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To launch an OpenCL kernel the user must provide
relevant data as buffers, which are transferred from
the host to the corresponding compute device. A ker-
nel string can then be loaded and just-in-time com-
piled for the device. The kernel is then run, and the
results can be copied back to the host.

OpenCL has very good support for vectorized oper-
ations: it provides vector data types and defines a
number of standard operations for these vector types.
For example, the type double4 will allow four double val-
ues to be held in a SIMD register. This makes it easy to
explicitly target modern SIMD execution in a portable
way while avoiding difficult compiler intrinsics and
keeping kernel code readable.

Python has excellent OpenCL support through the
PyOpenCL library by Andreas Kloeckner.6 PyOpenCL
automates much of the initialization of the OpenCL
environment and makes it easy to create buffers and
launch OpenCL kernels from Python.

OpenCL Assembly in Bempp-Cl
Bempp-cl has OpenCL kernels for all its boundary
operators. All operators have the same interface and
are launched in the same way. In the first step, the rel-
evant data will need to be copied to the compute
device. This data consists of

› Test and trial indices denoting the triangles over
which to be integrated.

› Signs of the normal directions for the spaces.
› Test and trial grids as flat floating point arrays,
defining each triangle through nine floating point

numbers, specifying the ðx; y; zÞ coordinates of
each of the three nodes of a triangle.

› Test and trial connectivity, which are lists of
node indices that define the corresponding trian-
gles of the test and trial grid.

› Test and trial mappings of local triangle degrees
of freedom to global degrees of freedom.

› Test and trial basis function multipliers for each
triangle, which are triangle dependent prefactors
needed for certain function spaces (e.g., in
electromagnetics).

› Quadrature points and quadrature weights.
› Abuffer that contains the global assembledmatrix.
› Additional kernel parameters, such as the wave-
number for Helmholtz problems.

› The number of test and trial degrees of freedom.
› A single byte that is set to one if the test and trial
grids are disjoint.

An example kernel definition is shown in Figure 4.
Before the kernel can be launched, it needs to be con-
figured and just-in-time compiled. Kernel configuration
happens through C-style preprocessor definitions that
are passed through the just-in-time compiler. These
include the names of the test and trial space, the
name of the function that evaluates the Green’s func-
tion, whether we are using single or double precision
types, and (for SIMD enhanced kernels) the vector
length of the SIMD types. For example, in Figure 4 all
floating point types have the name REALTYPE. This is
substituted with either float or double during just-in-
time compilation.

FIGURE 4. Definition of the OpenCL compute kernel for scalar integral equations.
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Each work-item computes (using numerical quad-
rature) all interactions of basis functions on the trial
element with basis functions on the test element.
Before summing the result into the global result
buffer, the kernel checks via the connectivity infor-
mation if the test and trial triangles are adjacent or
identical (see Figure 2). To do this, it simply checks if
at least one of the node indices of the test triangle is
equal to one of the node indices of the trial triangle.
If this is true and the grids are not disjoint, the result
of the kernel is discarded and not summed back into
the global result buffer: for these triangles, separate
singular quadrature rules need to be used. The effect
is that a few work-items do work that is discarded.
However, in a grid with N elements, the number of
triangle pairs requiring a singular quadrature rule is
OðNÞ, while the total number of triangle interactions
is N2. Hence, only a tiny fraction of work-items are
discarded.

SIMDOptimized Kernels
When we are running on a CPU and want to take
advantage of available SIMD optimizations, we need
to make a few modifications to our approach. The cor-
responding kernel works similarly to what is described
above, but we compute a batch of interactions
between one test triangle and X trial triangles, where
X is either 4, 8, or 16 (depending on the number of
available SIMD lanes). This strategy allows us to opti-
mize almost all floating point operations within a ker-
nel run for SIMD operation. If the number of trial
elements is not divisible by 4, 8, or 16, then the few
remaining trial elements are assembled with the stan-
dard nonvectorized kernel.

Each kernel definition is stored in two variants, one
with the ending _novec.cl and another one with the
ending _vec.cl. The vectorized variant is configured via
preprocessor directives for the desired number of vec-
tor lanes. Having to develop two OpenCL kernel codes
for each operator creates a certain amount of over-
head, but once we have implemented the nonvector-
ized version then, with the help of preprocessor
directives and a number of helper functions that do
the actual implementation of operations depending
on whether the kernel is vectorized or not, it is usually
only a matter of an hour or two to convert the nonvec-
torized kernel into a vectorized version.

Alternatively, some CPU OpenCL runtime environ-
ments can (optionally) try and autovectorize kernels
by batching together work-items on SIMD lanes, simi-
lar to what we do manually. In our experience, this
works well for very simple kernels but often fails for

more complex OpenCL kernels. This is why we decided
to implement this strategy manually.

A completely different SIMD strategy could be
taken by batching together quadrature evaluations
within a single test/trial pair. There are two disadvan-
tages to this approach: first, it only works well if the
number of quadrature points is a multiple of the avail-
able SIMD lanes. Second, other operations such as
the geometry calculations for each element then can-
not be SIMD optimized as these are only performed
once per test/trial pair.

Assembling the Singular Part of
Integral Operators
The assembly of the singular part of an integral opera-
tor works a bit differently. Remember that the singular
part consists of triangle parts which are adjacent to
each other or identical (the three later cases in
Figure 2): there are OðNÞ such pairs. We are using fully
numerical quadrature rules for these integrals that are
based on subdividing the 4-D integration domain and
using transformation techniques to remove the singu-
larities. This gives highly accurate evaluation of these
integration pairs, but requires a large number (typically
over 1000) quadrature points per triangle pair.

For this assembly, we create one work-group for
each singular triangle pair. Inside this work-group, we
have a number of work-items that evaluate the quad-
rature rules then sum up the results. Depending on
how two triangles are related to each other, different
types of singular quadrature rule are needed. We solve
this by preloading all possible quadrature rules onto
the device, and also store for each triangle pair an
index pointing to the required quadrature rule so that
the kernel function can select the correct rule to eval-
uate. For the singular quadrature rules, we did not
implement separate SIMD optimized kernels as the
proposed implementation is already highly efficient
and requires only a fraction of the computational time
of the regular quadrature rules described above. At
the end, the singular integral values are either
summed into the overall result matrix, or (if desired by
the user) stored as separate sparse matrix.

Avoiding Data Races in the Global
Assembly
Data races in global assembly routines are a problem
whenever different triangles need to sum into the
same global degree of freedom. To solve this, we use
standard coloring techniques to split up the computa-
tions into chunks that access different data regions.
To this end, we define two triangles as neighbors if
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they share at least one global degree of freedom.
Based on this relationship, we run a simple greedy col-
oring algorithm in the initialization phase of a function
space. An example coloring is shown in Figure 5.

The compute kernels can then be run color-by-
color. OpenCL parallelizes over test elements and
trial elements, and so we have to iterate over the
product space of possible color combinations. In
Numba, we only parallelize over test elements so it
is sufficient to iterate over all possible colors in the
test space.

NUMBA ASSEMBLY OF INTEGRAL
OPERATORS

The main focus of Numba7 within Bempp-cl is to pro-
vide accelerated implementations of routines with lin-
ear complexity, such as grid iterations, integration of
functions over grids, or assembly of certain sparse
matrices. However, we also provide a fall-back imple-
mentation of the OpenCL dense operator assembly in
Numba.

With Numba, we use loop parallelism: each loop
iteration is the assembly of one test triangle with all
trial triangles. We then parallelize over the test trian-
gles through a parallel for-loop. Within each loop, we
try to optimize for autovectorization by linearly pass-
ing through the data in memory order for the individ-
ual operations. However, a much smaller fraction of
operations is SIMD optimized due to the lack of tar-
geted SIMD constructs in Numba.

We stress that while Numba provides backends
not only for CPU, but also for ROCm and CUDA, we
currently only use the CPU component of Numba.

PERFORMANCE BENCHMARKS
In this section, we provide a number of performance
benchmarks. The tests were all run on a Dell Preci-
sion 7740 Workstation Laptop with 64 GB RAM. Its
CPU is an Intel i9-9980HK with a base clock of
2.4 GHz and a burst clock of 5 GHz. The CPU sup-
ports AVX, AVX2, and AVX-512. As a GPU, we use an
Nvidia Quadro RTX 3000 GPU. All benchmark tests
were performed in Linux. For OpenCL on the GPU, we
use the Nvidia GPU drivers and as CPU runtime we
compare the open-source PoCL driver against the
Intel CPU OpenCL runtime environment. All timing
runs were repeated several times to make sure that
the overhead from running the OpenCL and Numba
just-in-time compilers did not skew the results.
Though hardly noticeable by users, for smaller experi-
ments the compilation phase typically takes longer
than the actual computation.

Dense Operator Assembly
We start by benchmarking the dense operator assem-
bly. We assemble the matrix A defined by

Aij ¼
Z
G

ciðxxÞ
Z
G

fjðyyÞ
4pjxx� yyj dsyy dsxx

with G being the unit sphere. For the basis functions fj

and test functions ci, we compare two cases: piece-
wise constant functions for both (P0 functions); and
nodal, piecewise linear, and globally continuous func-
tions for both (P1 functions). In the P0 case, each trian-
gle is associated with just one piecewise constant
function. In the P1 case, each triangle is associated
with three linear basis functions, one for each node of
the triangle.

We first compare the OpenCL CPU performance
for the Intel OpenCL runtime and the PoCL OpenCL
runtime driver. We run the tests in single precision
and double precision. The native vector width for both
drivers in single precision is 8, and in double precision
is 4, corresponding to AVX instructions. In Bempp-cl,
this means that we assemble in vectorized form one
test triangle with eight trial triangles in single preci-
sion, and with four trial triangles in double precision.
Within the assembly, almost all floating point instruc-
tions are manually vectorized to take advantage of
this. We should hence see up to a factor 2 speed-up
between single and double precision assembly.

FIGURE 5. The triangles in this mesh have been colored

(using a greedy algorithm) so that no two neighboring trian-

gles are the same color. Sets of triangles of the same color

can therefore be processed together as they are guaranteed

to not be neighbors, so do not share any degrees of freedom.

[The dots on each cell are included as a visual aid for anyone

who prints this article in black and white.].
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The timings for a grid with 32,768 elements are
shown in Figure 6. We see the expected speed-up
between single precision and double precision evalua-
tion. It is interesting to note the difference between
the Intel and the PoCL runtime environment. For P0
basis functions, the PoCL driver (gray bar) significantly
outperforms the Intel driver (orange bar) in both single
and double precision. For P1 basis functions, however,
the Intel driver gives better performance.

In Figure 7, we compare specifically the perfor-
mance of single precision and double precision evalu-
ation for the PoCL driver for various grid sizes in the
case of a P0 basis. We can see that the speed-up for

larger grid sizes is slightly more than just a factor of
two. The final data point in this graph corresponds to
the grid size used for Figure 6.

In Bempp-cl, we can easily switch between CPU
Assembly, GPU Assembly, and Numba Assembly.
Figure 8 shows a comparison between these modes
for a grid with 2048 elements. The speed differences
are striking. GPU assembly in single precision is a fac-
tor of two slower than CPU assembly, and much
slower in double precision due to the limited double
precision performance of our hardware, though we
note that this is not an issue for double precision opti-
mized data center accelerators. Numba is five times
slower for single precision and still around three times
slower for double precision than PoCL. The GPU
behavior can be explained by data transfer: while the
GPU kernels themselves are extremely fast, data
transfer over the bus severely limits performance.
Even for medium sized problems, we have to transfer
the data back to the main memory as GPU RAM is too
limited to keep dense matrices with tens of thousands
of rows and columns on the device.

An alternative method is to compute the matrix-
vector product (matvec) Ax on the device without first
computing the dense matrix A. This can be done by
recomputing all matrix elements during each matvec
calculation on-the-fly and not storing them. We have
done experiments with this, and observed significant
speed-ups compared to CPU evaluation as we now
only need to transfer single vectors over the bus. For
larger problems, however, it is not competitive com-
pared to accelerated methods such as FMM, due to
the quadratic complexity of direct evaluation of the
matvec compared to linear complexity of FMM. For
smaller problems, it is still practically better to just
assemble the whole matrix and store it, as then mat-
vecs are much faster for an iterative solver. Hence, we
can conclude that there is only limited practical rele-
vance for on-the-fly GPU evaluation of boundary inte-
gral operators. There are, however, very significant
practical advantages of on-the-fly evaluation of
domain potential operators for visualization and post-
processing, as we will see in the following section.

FIGURE 6. Comparison of the performance of PoCL and the

Intel OpenCL runtime for the assembly of the Laplace single-

layer boundary operator on a grid with 32,768 elements.

FIGURE 7. Comparison of the single-precision and double-

precision performance for various grid sizes using PoCL and

P0 basis functions.

FIGURE 8. Comparison of PoCL, Numba, and GPU assembly

for a grid with 2048 elements.
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The Numba performance difference seen in
Figure 8 is interesting. The main reason for this, we
believe, is significantly lower usage of AVX vectorized
instructions. We have taken care to optimize the
Green’s function evaluation for autovectorized evalua-
tion in Numba, but the loops over integration points
and other operations autovectorize very badly when
just looping over all trial triangles for a single test tri-
angle, as we currently do. We could tune our code for
better autovectorization in Numba, but this would
give little benefit as we have highly optimized hand-
tuned OpenCL kernels already. We therefore recom-
mend using Numba for operator assembly only as a
fallback if no OpenCL runtime is available (this is less
a judgement about Numba itself but about the limited
optimizations we have done for Numba assembly
routines).

Evaluating Domain Potentials for
Postprocessing of Electromagnetic
Problems
Once an integral equation is solved, one is usually
interested in evaluating the solution not only at the
boundary but also at points away from it. To do this,
we evaluate the integral

fðxxÞ ¼
Z
G

gðxx; yyÞfðyyÞ dsyy

for many points xx away from the boundary G. For
example, if we want to visualize a solution, we take
the points xx to be a regular grid of points.

Typically, we want to do only a small number of
potential evaluations at the end of a calculation. Dis-
cretizing this operation into a dense matrix and then

evaluating the dense matrix-vector product is not
practical for larger sizes. For very large problems with
hundreds of thousands of elements, we use FMM or
other accelerated approximate methods. For moder-
ately sized problems with a few ten thousand ele-
ments up to around a hundred thousand elements
(depending on the problem at hand), direct evaluation
of this integral for every point xx is highly efficient. We
would not go into the details of the corresponding
OpenCL kernels here, but we show some results that
demonstrate the relative performance on CPUs and
GPUs.

For the dense assembly of boundary integral oper-
ators, the performance was limited by the bus transfer
of the dense matrix. For the evaluation of domain
potentials, however, we only need to transfer to the
device the vector of coefficients of the basis functions
for f, and then transfer back to the host the values at
the points xx.

In this section, we consider the evaluation of the
electric potential operator, defined by

Epð ÞðxxÞ ¼ ik

Z
G

pðyyÞgðxx; yyÞdsyy

� 1

ik
rxx

Z
G

divpðyyÞgðxx; yyÞdsyy (2)

where gðxx; yyÞ ¼ eikjxx�yyj
4pjxx�yyj is the Helmholtz Green’s func-

tion and k the wavenumber of the problem. The func-
tion p : R3 ! R3 is a vector-valued function, leading to
an overall vector solution at each point xx. The imple-
mentation of electromagnetic problems in Bempp is
covered in detail in Scroggs et al.8 For these experi-
ments, we again use a grid with 32,768 triangles but
this time RWG (Rao–Wilton–Glisson) edge-based basis
functions are used. For the potential evaluation, we
use 50,000 random evaluation points in the exterior of
the unit sphere, and as wavenumber use k ¼ 1:0.

In Figure 9, we compare the performance of GPU
evaluation with that of the PoCL CPU driver. In single
precision, the GPU significantly outperforms the CPU;
and even in double precision, the Nvidia Quadro RTX
GPU is faster than the 8-core CPU, even though its
hardware is not optimized for fast double precision
operations.

SUMMARY
With Bempp-cl, we have created a Python library that
achieves high-performance through use of modern
just-in-time compilation technologies. Bempp-cl
mixes Numba evaluation for less compute intensive
linear complexity loops and sparse matrix generation
with highly optimized OpenCL kernels for

FIGURE 9. Evaluation of an electric field potential operator on

CPU via PoCL versus Nvidia GPU.
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computationally sensitive dense matrix assembly rou-
tines. Basing development on Python instead of clas-
sical C/C++ makes it very easy to adapt the library
and integrate with other libraries with Python interfa-
ces, such as the recent work integrating Bempp-cl
and the ExaFMM library to build electrostatic virus-
scale simulations.4

Strict separation of the computational backend
from the interface layer in the library also makes it
easy to integrate further backends, allowing us to
remain up to date with future compute models.
OpenCL itself has proved a valuable choice for the
purpose of this library, as it allows us to run CPU and
GPU optimized kernels with very little code overhead,
and allows the user to easily move between CPU- and
GPU-based compute devices with a simple parameter
change. In this article, we demonstrate Nvidia bench-
marks: the same benchmarking code could be used to
run on AMD or Intel GPUs.

A disadvantage of our approach is that using
OpenCL kernels introduces a second language (C99)
to the library. Using Numba throughout would give a
much more native Python experience, but, while
Numba is constantly improving, it is currently difficult
to achieve optimal performance for complex opera-
tions. OpenCL really shines here, as it makes explicit
SIMD operations very easy through dedicated con-
structs. Moreover, OpenCL kernels are completely
stack/register based functions, allowing much bet-
ter compiler optimizations while Numba needs to
create every object dynamically, even for very small
arrays for objects such as coordinate vectors. We
need to stress that we have performed very few
optimizations specific to Numba, while significant
optimization has gone into the OpenCL codes. It is
therefore well possible that the performance gap
between Numba and OpenCL can be significantly
reduced. But from other projects our own anec-
dotal experience is that the more Numba is opti-
mized, the less Pythonic and more C-like Numba
functions look. So while Numba is a very powerful
tool, it requires its own techniques for optimization,
different from standard Python code.

Another important consideration with respect to
Python and just-in-time acceleration is the type of
algorithms that benefit. For the dense assembly of
integral operators, we have very simple data struc-
tures that can easily be passed to compute kernels.
More complex data structures with larger mixture of
data movement operations and computations (e.g.,
tree-based algorithms) are much harder to accelerate
since the Python layer imposes limits here on the
performance.

Overall, with the model of mixed Python/
OpenCL/Numba development, we have created a
flexible and easy to extend platform for integral
equation computations. The initial reimplementa-
tion efforts by abandoning our old C++ code base
are paying off, as they allow us to develop new fea-
tures in a far simpler environment without sacrific-
ing performance. Strict separation of compute
backends and higher level routines makes it easy
for us to integrate other accelerator techniques in
the future with little code changes, and to react to
new trends in heterogeneous computing.

The current focus of further developments is on
letting Bempp-cl take advantage of cluster comput-
ing by integrating the mpi4py MPI bindings for Python.
We have also made big steps forward for large prob-
lems by creating a black-box FMM interface that
currently interfaces to ExaFMM: this has allowed us
to solve problems with 10 million elements on a sin-
gle workstation. We believe that Python-focused
development (with some native routines in lower
level languages) is a scalable model and are aiming
to exploit this scalability further as we move from
single workstation computations to large cluster
problems.
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