Product Algebras for Galerkin Discretisations of Boundary Integral Operators and their Applications

TIMO BETCKE, University College London, UK
MATTHEW W. SCROGGS, University of Cambridge, UK
WOJCIECH ŚMIGAJ, Met Office, UK

Operator products occur naturally in a range of regularised boundary integral equation formulations. However, while a Galerkin discretisation only depends on the domain space and the test (or dual) space of the operator, products require a notion of the range. In the boundary element software package Bempp, we have implemented a complete operator algebra that depends on knowledge of the domain, range, and test space. The aim was to develop a way of working with Galerkin operators in boundary element software that is as close to working with the strong form on paper as possible, while hiding the complexities of Galerkin discretisations. In this article, we demonstrate the implementation of this operator algebra and show, using various Laplace and Helmholtz example problems, how it significantly simplifies the definition and solution of a wide range of typical boundary integral equation problems.

CCS Concepts: • Mathematics of computing → Solvers; Discretization; Integral equations;

Additional Key Words and Phrases: Boundary integral equations, operator preconditioning, boundary element software

ACM Reference format:
https://doi.org/10.1145/3368618

1 INTRODUCTION
A typical abstract operator problem can be formulated as

\[Au = f , \]

where A is an operator mapping from a Hilbert space \(\mathcal{H}_1 \) into another Hilbert space \(\mathcal{H}_2 \) with the unknown \(u \in \mathcal{H}_1 \) and known \(f \in \mathcal{H}_2 \). Many modern operator preconditioning strategies depend on the idea of having a regulariser \(R : \mathcal{H}_2 \rightarrow \mathcal{H}_1 \) and solving the equation

\[RAu = Rf \] (1)
instead. This is particularly common in the area of boundary integral equations, where integral operators can be efficiently preconditioned by operators of opposite order [4, 12, 20]. Now suppose that we want to discretise Equation (1) using a standard Galerkin method. In general, we cannot discretise RA directly. We instead rewrite the above equation as an operator system

\[Au = q, \]
\[Rq = Rf, \]

where \(q \) is an auxiliary unknown. Upon Galerkin discretisation of the two equations, we obtain the discrete matrix system

\[Au = Mq, \]
\[Rq = Rf, \]

where the matrices \(A \) and \(R \) are the discrete matrices associated with the corresponding operators, and \(u, q, f \) are now coefficient vectors for the associated functions. The matrix \(M \) is a mass matrix (see Section 3.2). Assuming that \(M \) is square and invertible, we can now eliminate the vector \(q \) and obtain the discrete equation

\[RM^{-1}Au = Rf. \]

(2)

To solve Equation (2), we have to assemble all involved matrices, form the right-hand side, implement a function that evaluates \(RM^{-1}Av \) for a given vector \(v \), and then solve Equation (2) with GMRES or another iterative solver of choice. Ideally, we would not have to deal with these implementational details and just directly write the following code:

\[
A = \text{operator}(...) \\
R = \text{operator}(...) \\
f = \text{function}(...) \\
u = \text{gmres}(R \ast A, R \ast f)
\]

Note that at the end, the solution \(u \) is again a function object. For this code snippet to work and the mass matrix \(M \) to be assembled automatically, either the implementation of the operator product needs to be aware of the test space of \(A \) and domain space of \(R \), or the software definition of \(A \) needs to contain information about its range. We have decided for the second approach, namely, associating information about the range space with the definition of operators. The reasons are as follows:

- It allows an elegant way of describing the product of operators in software.
- By storing information about the range space, we can form products of operators and functions and obtain resulting function objects that are presented by coefficients in the correct range space.
- Mass matrix preconditioning becomes a natural property associated with each operator. In Equation (2) the mass matrix preconditioned equation is \(\hat{M}^{-1}RM^{-1}Au = \hat{M}^{-1}Rf \), where \(\hat{M} \) is the mass matrix between the discrete dual space of \(R \) and its discrete range space. If the range space information is associated with the operator definition, then mass matrix preconditioning can be enabled in the iterative solver without requiring any further information from the user.

The underlying ideas are based on a software implementation of the notion of discrete strong forms of Galerkin discretisations, which are generalized Riesz maps of Galerkin discretisations. In this article, we will briefly introduce the associated functional analysis concepts, then discuss
the implementation in detail and provide examples of how this product algebra can be used to elegantly describe some complex boundary element applications in software.

To demonstrate the product algebra, we use the Python/C++-based boundary element library Bempp (www.bempp.com) [18], originally developed by the authors of this article. Bempp is a comprehensive library for the solution of boundary integral equations for Laplace, Helmholtz, and Maxwell problems. The leading design principle of Bempp is to allow a description of BEM problems in Python code that is as close to the mathematical formulation as possible, while hiding implementational details of the underlying Galerkin discretisations. This allows us to formulate complex block operator systems such as those arising in Calderón preconditioned formulations of transmission problems in just a few lines of code. Initial steps toward a Bempp operator algebra were briefly described in Reference [18] as part of a general library overview. The examples in this article are based on the current version (Bempp 3.3), which has undergone significant development since then and now contains a complete and mature product algebra for operators and grid functions.

As examples for the use of an operator algebra in more complex settings, we discuss: the efficient assembly of the hypersingular operator via a representation using single layer operators; the assembly of Calderón projectors and the computation of their spectral properties and the Calderón preconditioned solution of acoustic transmission problems.

A particular challenge is the design of product algebras for Maxwell problems. The stable discretisation of the electric and magnetic field operators for Maxwell problems requires the use of a non-standard skew symmetric bilinear form. The Maxwell case is discussed in much more detail in Reference [17].

The article is organised as follows. In Section 2, we review basic definitions of boundary integral operators for Laplace and Helmholtz problems. In Section 3, we introduce the basic concepts of a Galerkin product algebra and discuss some implementational details. Section 4 then gives a first application to the fast assembly of hypersingular operators for Laplace and Helmholtz problems. Then, in Section 5, we discuss block operator systems at the example of Calderón preconditioned transmission problems. The article concludes with a summary in Section 6.

While most of the mathematics presented in this article are well known among specialists, the focus of this article is on hiding mathematical complexity of Galerkin discretisations. With the wider penetration and acceptance of high-level scripting languages, such as Matlab, Python, and Julia in the scientific computing community, we now have the tools and structures to make complex computational operations accessible for a wide audience of non-specialist users, making possible the fast dissemination of new algorithms and techniques beyond traditional mathematical communities.

2 BOUNDARY INTEGRAL OPERATORS FOR SCALAR LAPLACE AND HELMHOLTZ PROBLEMS AND THEIR GALERKIN DISCRETISATION

In this section, we give the basic definitions of boundary integral operators for Laplace and Helmholtz problems and some of their properties needed later. More detailed information can be found, e.g., [16, 19].

We assume that $\Omega \subset \mathbb{R}^3$ is a piecewise smooth bounded Lipschitz domain with boundary Γ. By $\Omega^+ := \mathbb{R}^3 \setminus \overline{\Omega}$, we denote the exterior of Ω. We denote by γ^{\pm}_0 the associated interior ($-$) and exterior ($+$) trace operators and by γ^{\pm}_1 the interior and exterior normal derivative operators. We always assume that the normal direction ν points outwards into Ω^*.

The average of the interior and exterior trace is defined as $\{\gamma_0 f\} := \frac{1}{2}(\gamma^+_0 f + \gamma^-_0 f)$. Correspondingly, the average normal derivative is defined as $\{\gamma_1 f\} := \frac{1}{2}(\gamma^+_1 f + \gamma^-_1 f)$.

2.1 Operator Definitions

We consider a function \(\phi^- \in H^1(\Omega) \) satisfying the Helmholtz equation \(-\Delta \phi^- - k^2 \phi^- = 0 \), where \(k \in \mathbb{R} \). By Green’s representation theorem, we have

\[
\phi^-(x) = [\mathcal{V} \gamma^-_1 \phi^-] (x) - [\mathcal{K} \gamma^-_0 \phi^-] (x), \quad x \in \Omega, \tag{3}
\]

for the single layer potential operator \(\mathcal{V} : H^{-1/2}(\Gamma) \to H^1_{\text{loc}}(\Omega \cup \Omega^+) \) defined by

\[
[\mathcal{V} \mu](x) = \int_{\Gamma} G(x, y) \mu(y) \, ds(y), \quad \mu \in H^{-1/2}(\Gamma),
\]

and the double layer potential operator \(\mathcal{K} : H^{1/2}(\Gamma) \to H^1_{\text{loc}}(\Omega \cup \Omega^+) \) defined by

\[
[\mathcal{K} \xi](x) = \int_{\Gamma} \frac{\partial G(x, y)}{\partial n(y)} \xi(y) \, ds(y), \quad \xi \in H^{1/2}(\Gamma).
\]

Here, \(G(x, y) := \frac{e^{ik|y-x|}}{4\pi|y-x|} \) is the associated Green’s function. If \(k = 0 \), then we obtain the special case of the Laplace equation \(-\Delta u = 0 \).

We now define the following boundary operators as the average of the interior and exterior traces of the single layer and double layer potential operators:

- The **single layer** boundary operator \(\mathcal{V} : H^{-1/2}(\Gamma) \to H^{1/2}(\Gamma) \) defined by
 \[
 \mathcal{V} \mu = \{ y_0 \mathcal{V} \mu \}, \quad \mu \in H^{-1/2}(\Gamma).
 \]

- The **double layer** boundary operator \(\mathcal{K} : H^{1/2}(\Gamma) \to H^{1/2}(\Gamma) \) defined by
 \[
 \mathcal{K} \xi = \{ y_0 \mathcal{K} \xi \}, \quad \xi \in H^{1/2}(\Gamma).
 \]

- The **adjoint double layer** boundary operator \(\mathcal{K}' : H^{-1/2}(\Gamma) \to H^{-1/2}(\Gamma) \) defined by
 \[
 \mathcal{K}' \mu = \{ y_1 \mathcal{V} \mu \}, \quad \mu \in H^{-1/2}(\Gamma).
 \]

- The **hypersingular** boundary operator \(\mathcal{W} : H^{1/2}(\Gamma) \to H^{-1/2}(\Gamma) \) defined by
 \[
 \mathcal{W} \xi = -\{ y_1 \mathcal{K} \xi \}, \quad \xi \in H^{1/2}(\Gamma).
 \]

Applying the interior traces \(y_0^- \) and \(y_1^- \) to the Green’s representation Equation (3), and taking into account the jump relations of the double layer and adjoint double layer boundary operators on the boundary \(\Gamma \) [19, Section 6.3 and 6.4], we arrive at

\[
\begin{bmatrix}
 y_0^- \phi^- \\
 y_1^- \phi^-
\end{bmatrix} = \left(\frac{1}{2} \text{Id} + A \right) \begin{bmatrix}
 y_0^- \phi^- \\
 y_1^- \phi^-
\end{bmatrix}, \tag{4}
\]

with

\[
A := \begin{bmatrix}
 -\mathcal{K} & \mathcal{V} \\
 \mathcal{W} & \mathcal{K}'
\end{bmatrix}, \tag{5}
\]

which holds almost everywhere on \(\Gamma \). The operator \(C^- := \frac{1}{2} \text{Id} + A \) is also called the interior Calderón projector. If \(\phi^+ \) is a solution of the exterior Helmholtz equation \(-\Delta \phi^+ - k^2 \phi^+ = 0 \) in \(\Omega^+ \) with boundary condition at infinity

\[
\lim_{|x| \to \infty} \frac{\partial}{\partial |x|} \phi^+ - i k \phi^+ = 0,
\]

for \(k \neq 0 \) and

\[
\lim_{|x| \to \infty} \phi^+(x) = O \left(\frac{1}{|x|} \right).
\]
for \(k = 0 \), then Green’s representation formula is given as
\[
\phi^*(x) = \left[K_0^\gamma \phi^* \right] (x) - \left[V_1^\gamma \phi^* \right] (x), \quad x \in \Omega^+.
\] (6)
Taking the exterior traces \(y_0^\gamma \) and \(y_1^\gamma \) now gives the system of equations
\[
\begin{bmatrix}
y_0^\gamma \phi^*
y_1^\gamma \phi^*
\end{bmatrix} = \left(\frac{1}{2} \text{Id} - A \right) \begin{bmatrix}
y_0^\gamma \phi^*
y_1^\gamma \phi^*
\end{bmatrix},
\] (7)
with associated exterior Calderón projector \(C^+ := \frac{1}{2} \text{Id} - A \).

2.2 Galerkin Discretisation of Integral Operators

Let \(T_h \) be a triangulation of \(\Gamma \) with \(N \) piecewise flat triangular elements \(\tau_j \) and \(M \) associated vertices \(p_i \). We define the function space \(S^0_h \) of elementwise constant functions \(\phi_j \) such that
\[
\phi_j(x) = \begin{cases}
1, & x \in \tau_j \\
0, & \text{otherwise},
\end{cases}
\]
and the space \(S^1_h \) of globally continuous, piecewise linear hat functions \(\rho_i \) such that
\[
\rho_i(p_f) = \begin{cases}
1, & i = \ell \\
0, & \text{otherwise}.
\end{cases}
\]
Denote by \(\langle u, v \rangle_\Gamma \) the suitable extension of the \(L^2 \)-based surface dual form defined by
\[
\int_\Gamma u(x) \overline{v(x)} \, ds(x)
\]
for \(L^2 \) functions \(u \) and \(v \). By restricting \(H^{1/2}(\Gamma) \) onto \(S^1_h \) and \(H^{-1/2}(\Gamma) \) onto \(S^0_h \), we obtain the Galerkin discretizations \(V, K, K', W \) defined as
\[
[V]_{ij} := \langle V \phi_j, \phi_i \rangle_\Gamma, \quad [K]_{ij} := \langle K \phi_j, \phi_i \rangle_\Gamma, \\
[K']_{ij} := \langle K' \phi_j, \rho_i \rangle_\Gamma, \quad [W]_{ij} := \langle W \rho_j, \rho_i \rangle_\Gamma,
\]
where here \([\cdot]_{ij}\) denotes the element \((i, j)\) of the given matrix. A computable expression of \(W \) using weakly singular integrals is given in Section 4.

A problem with this definition of discretisation spaces is that \(S^0_h \) and \(S^1_h \) have a different number of basis functions, leading to non-square matrices \(K \) and \(K' \). Hence, it is only suitable for discretisations of integral equations of the first-kind involving only \(V \) or \(W \) on the left-hand side. There are two solutions to this.

1. Discretise both spaces \(H^{1/2}(\Gamma) \) and \(H^{-1/2}(\Gamma) \) with the continuous space \(S^1_h \). This works well if \(\Gamma \) is sufficiently smooth. However, if \(\Gamma \) has corners then Neumann data in \(H^{-1/2}(\Gamma) \) is not well represented by continuous functions.
2. Instead of the space \(S^0_h \) use the space of piecewise constant functions \(\phi_D \) on the dual grid that is obtained by associating each element of the dual grid with one vertex of the original grid (see Figure 1). We denote this piecewise constant space by \(S^0_{D,h} \). With this definition of piecewise constant functions also the matrix \(K \) is square. Moreover, the mass matrix between the basis functions in \(S^1_h \) and \(S^0_{D,h} \) is inf-sup stable \([4, 12]\).

In Reference [2] the different convergence behaviour of these two approaches for polyhedral domains is discussed.

3 GALERKIN PRODUCT ALGEBRAS AND THEIR IMPLEMENTATION

In this section, we discuss the product of Galerkin discretisations of abstract Hilbert space operators and how a corresponding product algebra can be implemented in software. While the mathematical basis is well known, most software libraries do not support a product algebra, making implementations of operator-based preconditioners and many other operations more cumbersome.
than necessary. This section proposes a framework to elegantly support operator product algebras in general application settings. The formalism introduced here is based on (generalised) Riesz maps. A nice introduction in the context of Galerkin discretisations is contained in Reference [13]. The specific formalism based on realisations of dual spaces presented here is described in more detail in Reference [5].

3.1 Background in Functional Analysis

In the following, we provide a brief overview over the functional analysis background of the discrete Galerkin operator calculus introduced in the remainder of Section 3. While the discrete operator calculus can be understood on its own, the following shows the connection to the concepts of dual spaces and (generalised) Riesz maps. For a more formal introduction into the construction of realisations of dual spaces see the recent paper by Chandle-Wilde, Hewett, and Moiola [5].

We consider the operator equation

\[Au = f \]

for a linear operator mapping from the domain Hilbert space \(\mathcal{H}^\text{dom}_A \) into the range Hilbert space \(\mathcal{H}^\text{ran}_A \). Correspondingly, we have \(u \in \mathcal{H}^\text{dom}_A \) and \(f \in \mathcal{H}^\text{ran}_A \). Let \((\cdot, \cdot)_{\mathcal{H}^\text{ran}_A} : \mathcal{H}^\text{ran}_A \times \mathcal{H}^\text{ran}_A \to \mathbb{C} \) be the natural (complex and anti-linear) inner product associated with \(\mathcal{H}^\text{ran}_A \). We can rewrite the above equation in its variational form as

\[(Au, \psi)_{\mathcal{H}^\text{ran}_A} = (f, \psi)_{\mathcal{H}^\text{ran}_A}, \quad \forall \psi \in \mathcal{H}^\text{ran}_A. \tag{8} \]

Define the map \(\tau : \mathcal{H}^\text{ran}_A \to (\mathcal{H}^\text{ran}_A)^* \) by \(\tau x = (x, \cdot)_{\mathcal{H}^\text{ran}_A} \). Here, \((\mathcal{H}^\text{ran}_A)^* \) is the space of all bounded anti-linear forms defined on \(\mathcal{H}^\text{ran}_A \). The map \(\tau \) is an isometry. Its inverse \(\tau^{-1} : (\mathcal{H}^\text{ran}_A)^* \to \mathcal{H}^\text{ran}_A \) is called the Riesz map associated with \(\mathcal{H}^\text{ran}_A \) (see, e.g., [6]). We can then reformulate Equation (8) as

\[\tau Au = \tau f, \]

with \(\tilde{A} := \tau A \) being the weak form of the operator \(A \) and \(A = \tau^{-1}\tilde{A} \) its strong form.

For practical application, it is often not beneficial to work with the natural inner product. Consider the single layer operator \(V \) with domain \(H^{-1/2}(\Gamma) \) and range \(H^{1/2}(\Gamma) \). The natural inner product in \(H^{1/2}(\Gamma) \) is a complicated and unwieldy object. We would much rather like to work with dual forms induced by the standard \(L^2 \) inner product. Assume that we have a Hilbert space \(\mathcal{H}^\text{dual}_A \) together with an isomorphism \(\iota : \mathcal{H}^\text{dual}_A \to (\mathcal{H}^\text{ran}_A)^* \). The pair \((\mathcal{H}^\text{dual}_A, \iota) \) is called a realisation of \((\mathcal{H}^\text{ran}_A)^* \) [5]. The operator \(\iota^* : \mathcal{H}^\text{ran}_A \to (\mathcal{H}^\text{dual}_A)^* \) defines a bilinear form \(\langle \phi, \psi \rangle_{\mathcal{H}^\text{ran}_A \times \mathcal{H}^\text{dual}_A} := \langle \iota^* \phi \rangle(\psi) = \langle \iota \psi \rangle(\phi) \). For example, in the case of the Sobolev space \(H^{1/2}(\Gamma) \) the associated dual space is the Sobolev space \(H^{-1/2}(\Gamma) \) with \(\iota^* \) being given through the \(L^2 \) induced \(H^{1/2}(\Gamma) \times H^{-1/2}(\Gamma) \) dual.
form. We can formulate the operator equation $Au = f$ as variational equation of the form

$$\langle Au, \xi \rangle_{\mathcal{H}_A^\text{ran} \times \mathcal{H}_A^\text{dual}} = \langle f, \xi \rangle_{\mathcal{H}_A^\text{ran} \times \mathcal{H}_A^\text{dual}}, \quad \forall \xi \in \mathcal{H}_A^\text{dual}.$$

The weak form \tilde{A} of A is now given as $\tilde{A} := A^* \tilde{A}$ with associated strong form $A = (\tilde{A})^{-1} \tilde{A}$. The map $(\tilde{A})^{-1}$ is a generalised Riesz map. When introducing finite-dimensional subspaces and suitable bases it turns out A^* is the mass matrix between the discrete subspaces of $\mathcal{H}_A^\text{dual}$ and \mathcal{H}_A^ran.

3.2 Discrete Operator Products

In addition to A, we define the operator $B : \mathcal{H}_B^\text{dom} \rightarrow \mathcal{H}_B^\text{ran}$. Correspondingly, we define the space $\mathcal{H}_B^\text{dual}$ as dual space (in the sense of a realisation as descibed above) to \mathcal{H}_B^ran with respect to a dual pairing $\langle \cdot, \cdot \rangle_{\mathcal{H}_B^\text{ran} \times \mathcal{H}_B^\text{dual}}$.

If $\mathcal{H}_A^\text{ran} \subset \mathcal{H}_B^\text{dom}$, then the product

$$g = BAf$$

is well defined in \mathcal{H}_B^ran. We now want to evaluate this product using Galerkin discretisations of the operators A and B.

Defining the function $g = Af$, the operator product Equation (9) can equivalently be written as

$$q = Af, \quad g = Bq.$$

Rewriting this system in its variational form leads to the problem of finding $(q, g) \in \mathcal{H}_A^\text{ran} \times \mathcal{H}_B^\text{ran}$ such that

$$\langle q, \mu \rangle_{\mathcal{H}_A^\text{ran} \times \mathcal{H}_A^\text{dual}} = \langle Af, \mu \rangle_{\mathcal{H}_A^\text{ran} \times \mathcal{H}_A^\text{dual}},$$

$$\langle g, \tau \rangle_{\mathcal{H}_B^\text{dual} \times \mathcal{H}_B^\text{ran}} = \langle Bq, \tau \rangle_{\mathcal{H}_B^\text{dual} \times \mathcal{H}_B^\text{ran}},$$

for all $(\mu, \tau) \in \mathcal{H}_A^\text{ran} \times \mathcal{H}_B^\text{dual}$. We now introduce the finite-dimensional subspaces $\mathcal{V}_X^\text{dom} \subset \mathcal{H}_X^\text{dom}$, $\mathcal{V}_h^\text{ran} \subset \mathcal{H}_h^\text{ran}$, and $\mathcal{V}_X^\text{dual} \subset \mathcal{H}_X^\text{dual}$ with basis functions γ_ran, γ_dom, γ_dual for $X = A, B$. In what follows, we assume that the dimension of $\mathcal{V}_h^\text{dual}$ is identical to the dimension of \mathcal{V}_h^ran and that the associated dual-pairing is inf-sup stable in the sense that

$$\sup_{\xi_\text{ran} \in \mathcal{V}_h^\text{dual}} \frac{|\langle \xi_\text{ran}, \gamma_\text{dual} \rangle_{\mathcal{H}_h^\text{ran} \times \mathcal{H}_h^\text{dual}}|}{\|\xi_\text{ran}\|_{\mathcal{H}_h^\text{ran}}} \geq c_X \|\gamma_\text{dual}\|_{\mathcal{H}_h^\text{dual}}, \quad \forall \xi_\text{ran} \in \mathcal{V}_h^\text{ran},$$

for some $c_X > 0$, implying that the associated mass matrix is invertible. The discrete version of Equation (10) is now given as

$$M_A q = Af,$$

$$M_B g = Bq,$$

where $[M_X]_{i,j} = \langle \gamma_\text{ran,}\gamma_\text{ran} \rangle_{\mathcal{H}_X^\text{ran} \times \mathcal{H}_X^\text{dual}}$, $X = A, B$ are the mass matrices of the dual pairings. The vectors f, q, \tilde{q}, g are the vectors of coefficients of the corresponding functions. If we further impose the strong condition that $q = \tilde{q}$ assuming that \mathcal{V}_h^ran and \mathcal{V}_h^dom have identical bases, then we can combine the above equations to obtain

$$g = M_B^{-1}BM_A^{-1}Af.$$

In light of Section 3.1 the matrix A is also called the discrete weak form of the operator A. Correspondingly, the matrix M_A^{-1} discretises the corresponding generalised Riesz map motivating the following definition.
Definition 3.1. Given the discrete weak form A defined as above. We define the associated discrete strong form as the matrix
\[
A^S := M_A^{-1}A.
\]

The notation of the discrete strong form allows us to define a Galerkin product algebra as follows.

Definition 3.2. Given the operator product $C := BA$. We define the associated discrete operator product weak form as
\[
C := B \circ A := B \cdot A^S = BM_A^{-1}A
\]
and the associated discrete strong form as
\[
C^S := M_B^{-1}(B \circ A).
\]

This discrete operator algebra is associative, since
\[
(C \circ B) \circ A = CM_B^{-1}BM_A^{-1}A = C \circ (B \circ A).
\]

We note that the a direct discretisation $\langle BA\phi^\text{dom}, \phi \rangle_{H^\text{ran} \times H^\text{dual}}$ is usually not identical to C as the action of the latter is computed as the solution of the operator system Equation (10) whose discretisation error also depends on the space $V^\text{ran}_{h,A}$ and the corresponding discrete dual. However, the discretisation of the operator product BA can rarely be computed directly and solving Equation (10) is usually the only possibility to evaluate this product.

We have so far considered the approximation of the weak form $\langle BA\phi^\text{dom}, \phi \rangle_{H^\text{ran} \times H^\text{dual}}$, where the operator B acts on $A\phi^\text{dom}$. However, there are situations where we want a discrete approximation of the product $\langle A\phi^\text{dom}, B\psi^\text{dom} \rangle_{H^\text{ran}_{h,A} \times H^\text{dual}}$ for $B : H^\text{dom}_B \to H^\text{dual}_A$. An example for the assembly of hypersingular operators will be given later. Note that if y is a coefficient vector of a function $\phi \in H^\text{dom}_B$, then $\tilde{y} = M_B^{-1}By$ is the coefficient vector to the Galerkin approximation of $\tilde{\phi} = B\phi$.

Hence, a discrete approximation of the weak form $\langle A\phi^\text{dom}, B\psi^\text{dom} \rangle_{H^\text{ran} \times H^\text{dual}}$ is given by
\[
B^H \cdot M_B^{-H} \cdot A = [B^S]^H A.
\]

Note that in the above product the test space of the left-most matrix B^H is now the domain space of B due to the adjoint. Furthermore, we are discretising the operator A. Hence, the proper range space for this expression is the range space of A. This motivates the following definition.

Definition 3.3. We define the dual discrete product weak form associated with the operators A and B as
\[
B \circ_D A := B^H \cdot M_B^{-H} \cdot A
\]
and the associated discrete strong form as
\[
C := M_B^{-1}(B \circ_D A),
\]
where $M_{B,A}$ is the mass matrix between the domain space of B and the range space of A.

3.3 Example: Operator Preconditioned Dirichlet Problems

As a first example, we describe the formulation of an operator preconditioned interior Dirichlet problem using the above operator algebra. We want to solve
\[
-\Delta \phi^\tau - k^2 \phi^\tau = 0 \text{ in } \Omega,
\]
\[
\gamma_0 \phi^\tau = g \text{ on } \Gamma,
\]
for a given function $g \in H^{1/2}(\Gamma)$. For simplicity, we assume that k^2 is neither an interior Dirichlet nor Neumann eigenvalue. Then the following formulations are well defined (see also comments below).

From the first line of Equation (4), we obtain that

$$y_0^+ \phi^- = \left(\frac{1}{2} \text{Id} - K \right) y_0^+ \phi^- + V y_1^+ \phi^-.$$

Substituting the boundary condition, we obtain the integral equation of the first kind

$$V y_1^+ \phi^- = \left(\frac{1}{2} \text{Id} + K \right) g.$$ \hspace{1cm} (12)

The operator $V : H^{-1/2}(\Gamma) \rightarrow H^{1/2}(\Gamma)$ is a pseudodifferential operator of order -1 and can be preconditioned by the hypersingular operator $W : H^{1/2}(\Gamma) \rightarrow H^{-1/2}(\Gamma)$, which is a pseudodifferential operator of order 1 \cite{12, 20}. We arrive at the preconditioned problem

$$W V y_1^+ \phi^- = W \left(\frac{1}{2} \text{Id} + K \right) g.$$ \hspace{1cm} (13)

Note that the operator W is singular if k^2 is an interior Neumann eigenvalue. Moreover, V is singular if k^2 is an interior Dirichlet eigenvalue. This can be seen for example by choosing the boundary data of interior Dirichlet eigenfunctions or interior Neumann eigenfunctions in the interior Calderón projector given in Equation (4). For more details on stabilised boundary element methods for Helmholtz problems, see, for example, Reference \cite{19} or for Bempp implementations the recent overview article \cite{3}.

In the case of Laplace problems ($k = 0$) the nullspace of W can be avoided by a rank-one modification of this operator \cite{20}. For the discretisation of the operators, we use the spaces $S_{D,h}^0$ and S_h^1 as described in Section 2.2. Using the notation introduced in Section 3, we obtain the discrete system

$$W \circ V \mathbf{x} = W \circ \left(\frac{1}{2} \mathbf{M} + K \right) \mathbf{g}.$$ \hspace{1cm} (14)

where \mathbf{x} is the vector of coefficients of the unknown function ϕ_h in the basis $S_{D,h}^0$. The matrix \mathbf{M} is the discretisation of the identity operator on $H^{1/2}(\Gamma)$. If, in addition, we want to use Riesz (or mass matrix) preconditioning, then we can simply take the discrete strong forms of the product operators on the left and right-hand side of Equation (14).

In terms of mathematics the definition of the discrete strong form is simply a notational convenience. We could equally write Equation (14) by directly inserting the mass matrix inverses. The main advantage of an operator product algebra first becomes visible in a software implementation that directly supports the notions of discrete strong forms and operator products. This is described below.

3.4 Basic Software Implementation of an Operator Algebra

Based on the definition of a discrete product algebra for Galerkin discretisations, we can now discuss the software implementation. Two concepts are crucial: namely, that of a grid function, which represents functions defined on a grid; and that of an operator, which maps grid functions from a discrete domain space into a discrete range space.

3.4.1 Grid Functions.
We start with the description of a grid function. A basic grid function object is defined by a discrete function space and a vector of coefficients on the space. However, for practical purposes this is not always sufficient. Consider the following situation of multiplying the discrete single layer operator V, discretised with the space of piecewise constant functions S_h^0 and a vector of coefficients f. The result $y = Vf$ is defined as $y_i = \sum_{j=1}^n f_j \langle V \phi_j, \phi_i \rangle$. Since the
single layer operator maps onto $H^{1/2}(\Gamma)$, we would like to obtain a suitable vector of coefficients \tilde{y} of piecewise linear functions in S^1_h, such that

$$y = M\tilde{y},$$

where M is the rectangular mass-matrix between the spaces S^0_h and S^1_h. Solving for \tilde{y} is only possible in a least-squares sense. Moreover, for these two spaces the matrix M may even be ill-conditioned or singular in the least-squares sense, making it difficult to obtain a good approximation in the range space. Hence, we also allow the definition of a grid function through its projection coefficients into the dual space even though a stable map into the discrete range space may not exist.

The constructors to define a grid function either through coefficients in a given space or through projections into a dual space are defined as follows:

```python
fun = GridFunction (space, coefficients=...)
fun = GridFunction (space, dual_space=..., projections=...)
```

Associated with these two constructors are two methods that extract the vectors of coefficients or projections:

```python
coeffs = fun.coefficients ()
proj = fun.projections (dual_space)
```

If the grid function is initialised with a coefficient vector, then the first operation just returns this vector. The second operation sets up the corresponding mass matrix M and returns the vector $M \ast \text{coeffs}$. If the grid function is initialised with a vector of projections and a corresponding dual space, then access to the coefficients results in a solution of a linear system if the space and dual space have the same number of degrees of freedom. Otherwise, an exception is thrown. If the `projections` method is called and the given dual space is identical to the original dual space on initialisation, then the vector `projections` is returned. Otherwise, first a conversion to coefficient form via a call to `coefficients()` is attempted.

This dual representation of a grid function via either a vector of coefficients or a vector of projections makes it possible to represent functions in many standard situations, where a conversion between coefficients and projections is mathematically not possible and not necessary for the formulation of a problem.

3.4.2 Operators

Typically, in finite element discretisation libraries the definition of an operator requires an underlying weak form, a domain space and a test space. However, to support the operator algebra introduced in Section 3 the range space is also required. Hence, we represent a constructor for a boundary operator in the following form:

```python
op = operator (domain, range_, dual_to_range, ...)
```

Here, the objects `domain`, `range_` and `dual_to_range` describe the finite-dimensional domain, range and dual spaces. Each operator provides the following two methods:

```python
discrete_weak_form = op.weak_form ()
discrete_strong_form = op.strong_form ()
```

The first one returns the standard discrete weak form while the second one returns the discrete strong form. The `discrete_weak_form` and `discrete_strong_form` are objects that implement at least a matrix-vector routine to multiply a vector with the corresponding discrete op-
operator. The multiplication with the inverse of the mass matrix in the strong form is implemented via computing an LU decomposition and solving the associated linear system.

Important for the performance is caching. The weak form is computed in the first call to the `weak_form()` method and then cached. Correspondingly, the LU decomposition necessary for the strong form is computed only once and then cached.

3.4.3 Operations on Operators and Grid Functions

With this framework the multiplication `result_fun = op * fun` of a boundary operator `op` with a grid function `fun` can be elegantly described in the following way:

```python
result_fun = GridFunction(
    space=op.range,
    dual_space=op.dual_to_range,
    projections=op.weak_form() * fun.coefficients)
```

Alternatively, we could have more simply presented the result as

```python
result_fun = GridFunction(
    space=op.range,
    coefficients=op.strong_form() * fun.coefficients)
```

However, the latter ignores that there may be no mass matrix transformation available that could map from the discrete dual space to the discrete range space.

As an example, we present a small code snippet from Bempp that maps the constant function \(f(x) = 1 \) on the boundary of the cube to the function \(g = Vf \), where \(V \) is the Laplace single layer boundary operator. \(f \) is represented in a space of piecewise constant functions on the dual grid and \(g \) is represented in a space of continuous, piecewise linear functions, reflecting the smoothing properties of the Laplace single layer boundary operator. The following lines define the cube grid with an element size of \(h = 0.1 \) and the spaces of piecewise constant functions on the dual grid, and continuous, piecewise linear functions on the primal grid:

```python
grid = bempp.api.shapes.cube(h=0.1)
const_space = bempp.api.function_space(grid, "DUAL", 0)
lin_space = bempp.api.function_space(grid, "B-P", 1)
```

We would like to remark on the parameter \(B-P \) (barycentric-polynomial) in the code given above for the function space definitions. Since the piecewise constant functions are defined on the dual grid, we are working with the barycentric refinement of the original grid [4]. Hence, the piecewise linear functions on the primal grid also need to be defined over the barycentric refinement (denoted by the parameter \(B-P \)) as the discretisation routines require the same refinement level for the domain and dual to range space. Mathematically, the standard space of continuous, piecewise linear functions over the primal grid and the space \(B-P \) over the barycentric refinement are identical.

We now define the operator and the constant grid function. For the grid function the coefficient vector is created via the NumPy routine `ones`, taking as input the number of degrees of freedom in the space:

```python
op = bempp.api.operators.boundary.laplace.single_layer(
    const_space, lin_space, const_space)
fun = bempp.api.GridFunction(
    const_space,
    coefficients=np.ones(const_space.global_dof_count))
```
Fig. 2. Left: The Laplace single layer operator applied to a constant function on the boundary of a cube. Right: The Laplace hypersingular operator applied to the function on the left.

We can now multiply the operator with the function and plot the result:

```python
result = op * fun
result.plot()
```

The output is the left cube shown in Figure 2. It is a continuous function in $H^{1/2}(\Gamma)$. The right cube in Figure 2 shows the result of multiplying the Laplace hypersingular operator defined by

```python
op = bempp.api.operators.boundary.wlaplace.hypersingular(
    lin_space, const_space, lin_space)
```

with the function on the left. Since the hypersingular operator maps into $H^{-1/2}(\Gamma)$, the appropriate range space consists of piecewise constant functions, and the result of the discrete operation correspondingly uses a space of piecewise constant functions.

Under the condition that the operations mathematically make sense and operators and functions are correctly defined this mechanism always maps grid function objects into the right spaces under the action of a boundary operator while hiding all the technicalities of Galerkin discretisations.

The internal implementation of the product of two operators is equally simple in this framework. Given two operators $op1$ and $op2$. Internally, the `weak_form()` method of the product $op1 * op2$ is defined as follows:

```python
def weak_form():
    return op1.weak_form() * op2.strong_form()
```

Correspondingly, the strong form of the product is implemented as

```python
def strong_form():
    return op1.strong_form() * op2.strong_form()
```

Internally, the product of two discrete operators provides a matrix-vector routine that successively applies the two operators to a given vector. If $op1$ and $op2$ implement caching, then an actual discretisation of a weak form is only performed once, and the product of the two operators is performed with almost no overhead.

It is very easy to wrap standard iterative solvers to support this operator algebra. Suppose we want to solve the product system Equation (14). Using an operator algebra wrapper to any standard GMRES (such as the one in SciPy [1]) the solution to the system Equation (14) now takes the form

```python
solution, info = gmres(W * V, W * (.5 * ident + K) * g)
```
with solution being a grid function that lives in the correct space of piecewise constant functions. The definition of such a GMRES routine is as follows:

```python
def gmres(A, b, ...):
    from scipy.sparse import linalg
    x, info = linalg.gmres(A.weak_form(), b.projections(A.dual_to_range), ...)
    return GridFunction(A.domain, coefficients=x), info
```

The product algebra automatically converts $W \times V$ into a new object that provides the correct space attributes and a weak_form method as defined above. Similarly, the right-hand side b is evaluated into a vector with the projections method. The full Bempp implementation provides among other options also a keyword attribute use_strong_form. If this is set to true, then inside the GMRES routine the solution is computed as

```python
    x, info = linalg.gmres(A.strong_form(), b.coefficients)
```

This corresponds to Riesz (or mass matrix) preconditioning and comes naturally as part of this algebra. Note that we have left out of the description checks that the spaces of the left- and right-hand side are compatible. In practice, this should be done by the code as sanity check.

Finally, the weak form of the dual product $B \odot D A$ can be be implemented as

```python
def weak_form():
    return B.strong_form().adjoint() * A.strong_form()
```

The range space and domain space of the dual product are the same as that of A while the dual space is the same as the domain space of B.

3.5 A Note on the Performance of the Operator Algebra

The operator algebra described above relies on being able to perform fast mass matrix LU decompositions and solves. In finite element methods LU decompositions with a mass matrix can be as expensive as solves with a stiffness matrix. In BEM the situation is quite different. Even with the utilisation of fast methods such as FMM (fast multipole method [9]) or hierarchical matrices [10], the assembly and matrix-vector product of a boundary operator is typically much more expensive than assembling a mass matrix and performing an LU decomposition of it. Therefore, mass matrix operations can be essentially treated as on-the-fly operations compared to the rest. One potential problem is the complexity of the LU decomposition of a mass matrix over a surface function space on Γ. For discretisations on regular planar grids the expected complexity of the LU decomposition is $O(n^{3/2})$ (or $O(n^2)$ over three-dimensional regular grids), where n is the number of dofs [14]. For boundary element problems, we expect a higher complexity than $O(n^{3/2})$, since we are not dealing with planar grids but with surface grids over manifolds embedded in three dimensions. Hence, there will be a cross-over point when the practical cost of the LU decomposition becomes higher than the linear or log-linear cost of the FMM or H-Matrices for the assembly and evaluation of matvecs with discretised integral operators. We have not observed this cross-over in our experiments. But this depends on the underlying geometry and implementation details of the algorithms. We have used the SuperLU code provided by SciPy for the sparse mass matrix LU decomposition on medium size BEM problems with hundreds of thousands of surface elements without any noticeable performance issues.
4 THE FAST ASSEMBLY OF HYPERSINGULAR BOUNDARY OPERATORS

The weak form of the hypersingular boundary operator can, after integration by parts, be represented as [11, 15]

\[
W_{ij} = \frac{1}{4\pi} \int_{\Gamma} \int_{\Gamma} \frac{e^{ik|x-y|}}{|x-y|} \langle \text{curl}_\Gamma \rho_i(x), \text{curl}_\Gamma \rho_j(y) \rangle ds(y) ds(x) - \frac{k^2}{4\pi} \int_{\Gamma} \int_{\Gamma} \frac{e^{ik|x-y|}}{|x-y|} \rho_i(x) \rho_j(y) \langle \nu(x), \nu(y) \rangle ds(y) ds(x),
\]

where the basis and test function \(\rho_j \) and \(\rho_i \) are basis functions in \(S^1_h \). Both terms in Equation (15) are now weakly singular and can be numerically evaluated.

However, Equation (15) motivates another way of assembling the hypersingular operator, which turns out to be significantly more efficient in many cases. In both terms of Equation (15), a single layer kernel is appearing. We can use this and represent \(W \) in the form

\[
W = \sum_{j=1}^{3} P_j^T \cdot V \cdot P_j - k^2 \sum_{j=1}^{3} Q_j^T \cdot V \cdot Q_j,
\]

where we now only need to assemble a single layer boundary operator \(V \) with smooth kernel in a space of discontinuous elementwise linear functions, and the \(P_j \) and \(Q_j \) are sparse matrices. \(P_j \) maps a continuous piecewise linear function to the \(j \)th component of its surface curl and \(Q_j \) scales the basis functions with the contributions of \(\nu \) in the \(j \)th component in each element. If \(k = 0 \) (Laplace case), then the second term in (16) becomes zero and it would even be sufficient to use a space of piecewise constant functions to represent \(V \).

This evaluation trick is well known and is suitable for discretising the hypersingular operator with continuous, piecewise linear basis functions on flat triangles. The disadvantage is that an explicit representation of the sparse matrices \(P_j \) and \(Q_j \) is necessary. This representation depends on the polynomial order and dof numbering of the space implementation.

In the following, we use the product algebra concepts to write the representation Equation (15) in a form that generalises to function spaces of arbitrary order on curved triangular elements without requiring details of the dof ordering in the implementation. Given a finite-dimensional trial space \(V^\text{trial}_h \) with basis \(\{ \theta_1, \ldots, \theta_L \} \) and a corresponding test space \(V^\text{test}_h \) with basis \(\{ \xi_1, \ldots, \xi_L \} \), we define the discrete sparse surface operators

\[
[C^\ell]_{ij} = \langle [\text{curl}_\ell \theta_j], \xi_i \rangle_{\Gamma},
\]

\[
[N^\ell]_{ij} = \langle \theta_j, [\nu^\ell] \xi_i \rangle_{\Gamma}.
\]

The operator \(C^\ell \) weakly maps a function \(f \) to its elementwise \(\ell \)th surface curl component, and the operator \(N^\ell \) weakly multiplies a function \(f \) with the \(\ell \)th component of the surface normal direction.

We can now represent the hypersingular operator as

\[
W = \sum_{j=1}^{3} C^j \odot_D V \odot C^j - k^2 \sum_{j=1}^{3} N^j \odot_D V \odot N^j.
\]

The dual multiplication \(\odot_D \) in Equation (17) acts on the test functions and the right multiplication \(\odot \) acts on the trial functions. Let \(V^m,\text{cont}_h \) be a globally continuous, elementwise polynomial function space of order \(m \) and denote by \(V^m,\text{disc}_h \) the corresponding space of discontinuous elementwise polynomial functions of order \(m \). Then the operators in Equation (15) have the following domain, range, and dual spaces:
Fig. 3. Time and memory for the assembly of the hypersingular operator using the standard weak form on the continuous space, discontinuous assembly with projection spaces, or a single-layer formulation. In the latter two cases, only the assembly time and memory of the boundary operator is given. Assembly time and memory requirements for the sparse operators are negligible.

<table>
<thead>
<tr>
<th>N (cont/discont)</th>
<th>Standard</th>
<th>projection</th>
<th>via single layer</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>time</td>
<td>mem</td>
<td>time</td>
</tr>
<tr>
<td>258 / 1536</td>
<td>0.7 s</td>
<td>1.0 MiB</td>
<td>1.0 s</td>
</tr>
<tr>
<td>1026 / 6144</td>
<td>3.9 s</td>
<td>9.0 MiB</td>
<td>3.5 s</td>
</tr>
<tr>
<td>4098 / 24576</td>
<td>19.6 s</td>
<td>60.1 MiB</td>
<td>15.2 s</td>
</tr>
<tr>
<td>16386 / 98304</td>
<td>1.6 m</td>
<td>345 MiB</td>
<td>1.4 m</td>
</tr>
<tr>
<td>65538 / 393216</td>
<td>7.6 m</td>
<td>1.79 GiB</td>
<td>8.6 m</td>
</tr>
</tbody>
</table>

We note that Equation (15) only requires inverses of dual pairings on $V_{h}^{m,\text{cont}}$ with itself as dual space and not dual pairings between $V_{h}^{m,\text{disc}}$ and $V_{h}^{m,\text{cont}}$, which are not invertible. If $k = 0$, then we can use spaces of order $m - 1$ for V and the dual and range space of C, since then the second sum in Equation (16) vanishes and the first sum only contains products of derivatives of the basis and trial functions. Also, we have chosen the discontinuous function space $V_{h}^{m,\text{disc}}$ as range space of V. This guarantees that the result in Equation (17) has the correct range space.

In terms of standard matrix products Equation (17) has the form

$$W = \sum_{j=1}^{3} [C_j]^T \cdot M^{-T} \cdot V \cdot M^{-1} \cdot C_j - k^2 \sum_{j=1}^{3} [N_j]^T \cdot M^{-T} \cdot V \cdot M^{-1} \cdot N_j,$$

where M is the mass matrix associated with the space $V_{h}^{m,\text{disc}}$ of discontinuous basis functions. Hence, M is elementwise block-diagonal and therefore M^{-1} is too, and we can efficiently directly compute M^{-1} as a sparse matrix. We can then accumulate the sparse matrix products in the sum above to obtain Equation (16) with $P_j = M^{-1} \cdot C_j$ and $Q_j = M^{-1} \cdot N_j$. In Bempp the whole implementation of the hypersingular operator can be written as follows:

```python
D = ZeroBoundaryOperator(...)
for i in range(3):
    D += C[i] . dual_product(V) * C[i]
    D += -k**2 * N[i] . dual_product(V) * N[i]
```

Due to efficient caching strategies, all operators, including the mass matrices and their inverses, are computed only once. Hence, there is minimal overhead from using a high-level expressive formulation.

In Figure 3, we compare times and memory requirements for the hierarchical matrix assembly of the hypersingular boundary operator on the unit sphere with wavenumber $k = 1$ using basis functions in S_{h}^{1}. The left column shows the standard assembly based on Equation (15) and S_{h}^{1}. The middle column shows results for assembling the operator directly on a larger space of piecewise linear discontinuous functions using the weak form Equation (15) and then projecting down to basis functions in S_{h}^{1}, that is $W = P^T W_{\text{disc}} P$ for a sparse matrix P that maps from S_{h}^{1} to S_{h}^{1}. The right column shows the assembly time and memory of the boundary operator only, for both the standard weak form and the single-layer formulation.
a space of piecewise linear discontinuous functions. This assembly allows matrix compression directly on the elementwise basis functions instead of only compressing on nodal basis functions after summing up the elementwise contributions. However, in the case of the hypersingular operator, this leads to larger memory consumption through the larger matrix size on the discontinuous space, but similar assembly times. The interesting case is the single layer formulation in Equation (17). Even though the single layer operator is assembled on the larger discontinuous space it compresses better, since it is a smoothing operator and therefore leads to around twice as fast assembly times. The price is a larger memory size compared to the standard assembly. If this is not of concern, then the single-layer-based assembly is preferable. Note that the evaluation of the matrix-vector product using Equation (17) requires six multiplications with the single layer operator. So, if a large number of matrix-vector products is needed, then this can become a bottleneck.

5 BLOCK OPERATOR SYSTEMS

Block operator systems occur naturally in boundary element computations, since we are typically dealing with pairs of corresponding Dirichlet and Neumann data whose relationship is given by the Calderón projector shown in Equation (4) for the interior problem and Equation (7) for the exterior problem. In this section, we want to demonstrate some interesting computations with the Calderón projector, which can be very intuitively performed in the framework of block operator extensions of the product algebra.

Within the Bempp framework, a blocked operator of given block dimension \((m, n)\) is defined as

\[
\text{blocked_operator} = \text{bempp.api.BlockedOperator}(m, n)
\]

We can now assign individual operators to the blocked operator by, e.g.,

\[
\text{blocked_operator}[0, 1] = \text{laplace.single_layer}(\ldots)
\]

Not every entry of a blocked operator needs to be assigned a boundary operator. Empty positions are automatically treated as zero operators. However, we require the following conditions before computations with blocked operators can be performed:

- There can be no empty rows or columns of the blocked operator.
- All operators in a given row must have the same range and dual_to_range space.
- All operators in a given column must have the same domain space.

These conditions are easily checked while assigning components to a blocked operator. The weak form of a blocked operator is obtained as

\[
\text{discrete_blocked_operator} = \text{blocked_operator}.\text{weak_form}()
\]

This returns an operator that performs a matrix-vector product by splitting up the input vector into its components with respect to the columns of the blocked operator, performs multiplications with the weak forms of the individual components, and then assembles the result vector back together again.

The interesting case is the definition of a strong form. Naively, we could just take the strong forms of the individual component operators. However, since each strong form involves the solution of a linear system with a mass matrix, we want to avoid this. Instead, we multiply the discrete weak form of the operator from the left with a block diagonal matrix whose block diagonal components contain the inverse mass matrices that map from the dual space in the corresponding row to the range space. This works due to the compatibility condition that all test and range spaces within a row must be identical.
5.1 Stable Discretisations of Calderón Projectors

With the concept of a block operator, we now have a simple framework to work with Calderón projectors $C^\pm = (\frac{1}{2} \text{Id} \mp A)$ with A defined as in Equation (5). For the sake of simplicity (to avoid discussions of special cases where k^2 is an interior resonance), in the following, we use the Calderón projector C^+ for the exterior problem. The interior Calderón projector C^- is treated in the same way. Remember that both operators are defined on the product space $H^{1/2}(\Gamma) \times H^{-1/2}(\Gamma)$.

Two properties are fundamental to Calderón projectors. First, $(C^+)^2 = C^+$; and second, if $U = [\gamma_0^+ u, \gamma_1^+ u]^T$ is the Cauchy data of an exterior Helmholtz solution u satisfying the Sommerfeld radiation condition, it holds that $U = C^+ U$, or equivalently $C^- U = 0$.

Based on the product algebra framework introduced in this article, we can easily represent these properties on a discrete level to obtain a numerical Calderón projector up to the discretisation error. As an example, we consider the Calderón projector on the unit cube with wavenumber $k = 2$.

Assembling the projector within the Bempp product operator framework is simple, and corresponding functions are already provided:

```python
k = 2
from bempp.api.operators.boundary.sparse import multitrace_identity
from bempp.api.operators.boundary.helmholtz import multitrace_operator
calderon = .5 * multitrace_identity(grid, spaces="dual") \
- multitrace_operator(grid, k, spaces="dual")
```

In this code snippet, the option spaces="dual" automatically discretises the Calderón projector using stable dual pairings of continuous, piecewise linear spaces on the primal grid, and piecewise constant functions on the dual grid.

To demonstrate the action of the Calderón projector to a pair of non-compatible Cauchy data, we define two grid functions, both of which are constant one on the boundary:

```python
f1 = bempp.api.GridFunction.from_ones(
calderon.domain_spaces[0])
f2 = bempp.api.GridFunction.from_ones(
calderon.domain_spaces[1])
```

The two functions are defined on the pair of domain spaces discretising the product space $H^{1/2}(\Gamma) \times H^{-1/2}(\Gamma)$. We can now apply the Calderón projector to this pair of spaces to compute new grid functions that form a numerically compatible pair of Cauchy data for an exterior Helmholtz solution. The code snippet for this operation is given by

```python
[u1, v1] = calderon * [f1, f2]
```

The grid functions u_1 and v_1 again live in the spaces of piecewise continuous and piecewise constant functions, respectively. We now apply the Calderón projector again to obtain

```python
[u2, v2] = calderon * [u1, v1]
```

The grid functions u_1 and u_2, respectively, v_1 and v_2 should only differ in the order of the discretisation error. We can easily check this:

```python
error_dirichlet = (u2-u1).l2_norm () / u2.l2_norm ()
error_neumann = (v2-v1).l2_norm () / v2.l2_norm ()
```
For the corresponding values, we obtain 1.2×10^{-4} and 8.0×10^{-4}. It is interesting to consider the singular values and eigenvalues of the discrete strong form of the Calderón projector. We can compute them easily as follows:

```python
from scipy.linalg import svdvals, eigvals
calderon_dense = bempp.api.as_matrix(calderon.strong_form())
sing_vals = svdvals(calderon_dense)
eig_vals = eigvals(calderon_dense)
```

The grid has 736 nodes. This means that the discrete basis for the possible Dirichlet data has dimension 736. For each Dirichlet basis function there is a unique associated Neumann function via the Dirichlet-to-Neumann map. Hence, we expect the range of the Calderón projector to be of dimension 736 with all other singular values being close to the discretisation error. Correspondingly, for the eigenvalues, we expect 736 eigenvalues close to 1 with all other eigenvalues being close to 0. This is indeed what happens as shown in Figure 4. In the top plot, we show the singular values.
of the discrete Calderón projector and in the bottom plot the eigenvalues. While the eigenvalues cluster around 1 and 0 the singular values show a significant drop-off between \(\sigma_{736} \approx 4.9 \times 10^{-3} \), which corresponds to the approximation error as the accuracy of the hierarchical matrix approximation was chosen to be \(10^{-3} \).

Finally, we would like to stress that while the eigenvalues of the discrete strong form are approximations to the eigenvalues of the integral operator, the singular values of the discrete strong form are generally not approximations to those of the integral operator. Given any operator \(A \) acting on a Hilbert space \(\mathcal{H} \) the Galerkin approximation of the continuous eigenvalue problem \(A\phi = \lambda \phi \) is given as \(Ax = \lambda M_Ax \), where \(M_A \) is the mass matrix between the dual space and \(\mathcal{H} \) with respect to the chosen dual form. If \(M_A \) is invertible, then this is equivalent to \(M_A^{-1}Ax = \lambda x \) or \(A^*x = \lambda x \). The situation is more complicated for the singular values. For simplicity, consider a compact operator (e.g. the single layer boundary operator) acting on \(L^2(\Gamma) \). We have that

\[
\|A\|_{L^2(\Gamma)} = \sup_{\phi \in L^2(\Gamma)} \frac{\|A\phi\|_{L^2(\Gamma)}}{\|\phi\|_{L^2(\Gamma)}}.
\]

Let \(M = C^TC \) be the Cholesky decomposition of the \(L^2(\Gamma) \) mass matrix \(M \) in a given discrete basis and \(A \) the Galerkin approximation in the same basis. Since \(\|\phi\|_{L^2(\Gamma)} = \|Cx\|_2 \) for a function \(\phi \) living in the discrete subspace of \(L^2(\Gamma) \) with given coefficient vector \(x \) it follows that

\[
\|A\|_{L^2(\Gamma)} \approx \max_{x \neq 0} \frac{\|CM^{-1}Ax\|_2}{\|Cx\|_2} = \|C^{-1/2}AC^{-1/2}\|_2,
\]

which is generally not the same as \(\|M^{-1}A\|_2 \). So while the strong form correctly represents spectral information it does not recover norm or similar singular-value-based approximations.

5.2 Calderón Preconditioning for Acoustic Transmission Problems

As a final application, we consider the Calderón preconditioned formulation of the following acoustic transmission problem:

\[
\begin{align*}
-\Delta u^+ - k^2 u^+ &= 0, & \text{in } \Omega^+, \\
-\Delta u^- - n^2 k^2 u^- &= 0, & \text{in } \Omega, \\
\gamma_0^- u^- &= \gamma_0^+ u^+ + \gamma_0^+ u^{inc}, & \text{on } \Gamma, \\
\gamma_1^- u^- &= \gamma_1^+ u^+ + \gamma_1^+ u^{inc}, & \text{on } \Gamma, \\
\lim_{|x| \to \infty} |x| \left(\frac{\partial}{\partial |x|} u^+(x) -iku^+(x) \right) &= 0.
\end{align*}
\]

Here, \(n = c^+/c^- \) is the ratio of the speed of sound \(c^+ \) in the surrounding medium to the speed of sound \(c^- \) in the interior medium. The incident field is denoted by \(u^{inc} \). The formulation that we present is based on Reference [8]. A generalized framework for scattering through composites is discussed in Reference [7]. We denote by \(V^- := [\gamma_0^- u^- \gamma_1^- u^-]^T \), \(V^+ := [\gamma_0^+ u^+ \gamma_1^+ u^+]^T \), and \(V^{inc} := [\gamma_0^+ u^{inc} \gamma_1^+ u^{inc}]^T \) the Cauchy data of \(u^- \), \(u^+ \) and \(u^{inc} \). Let \(A^+ \) be the multitrace operator associated with the wave number \(k^+ := k \) and \(A^- \) the multitrace operator associated with \(k^- := nk \) as defined in Equation (5). From the Calderón projector it now follows that

\[
\begin{align*}
\left(\frac{1}{2} \text{Id} + A^- \right) V^- &= V^- , \\
\left(\frac{1}{2} \text{Id} - A^+ \right) V^+ &= V^+ ,
\end{align*}
\]
Together with the interface condition $V^- = V^+ + V^{inc}$, we can derive from these relationships the formulation

$$\left(A^- + A^+\right) V^+ = \left(\frac{1}{2} \text{Id} - A^-\right) V^{inc}. \quad (20)$$

This formulation is well defined for all wave numbers $k > 0$ [8]. Moreover, it admits a simple preconditioning strategy [7] based on properties of the Calderón projector as follows. We note that A^+ is a compact perturbation of A^- [16]. We hence obtain

$$\left(A^- + A^+\right)^2 = (2A^- + \text{compact})^2 = \text{Id} + \text{compact}.$$

We can therefore precondition Equation (20) by squaring the left-hand side to arrive at

$$\left(A^- + A^+\right)^2 V^+ = \left(A^- + A^+\right)\left(\frac{1}{2} \text{Id} - A^-\right) V^{inc}. \quad (21)$$

With the block operator algebra in place in Bempp the main code snippet becomes

```python
A_minus = multitrace_operator(grid, n * k, spaces="dual")
A_plus = multitrace_operator(grid, k, spaces="dual")
ident = multitrace_identity(grid, spaces="dual")
op = A_minus + A_plus
rhs_op = op * (.5 * ident - A_minus)
sol, info = bempp.linalg.gmres(op * op, rhs_op * v_inc,
                                use_strong_form=True)
```

As in the single-operator case, we can intuitively write the underlying equations and solve them. All mass matrix transformations are being taken care off automatically. An example is shown in Figure 5. It demonstrates a two-dimensional slice at height 0.5 of a plane wave travelling through the unit cube. In this example, $k = 10$ and $n = 0.8$. The system was solved in seven GMRES iterations to a tolerance of 10^{-5}.

6 CONCLUSIONS

In this article, we have demonstrated how a Galerkin-based product algebra can be defined and implemented. The underlying idea is very simple. Instead of an operator being defined just via a domain and a test space, we define it by a triplet of a domain space, range space, and dual to range (test) space. This is more natural in terms of the underlying mathematical description and allows the software implementation of an automatic Galerkin operator product algebra.
We have demonstrated the power of this algebra using three examples: the efficient evaluation of hypersingular boundary operators by single-layer operators, the computation of the singular values and eigenvalues of Calderón projectors, and the Calderón preconditioned solution of an acoustic transmission problem.

As long as an efficient LU decomposition of the involved mass matrices is possible, the product algebra can be implemented with little overhead. Multiple LU decompositions of the same mass matrix can be easily avoided through caching.

In this article, we focused on Galerkin discretizations of boundary integral equations. Naturally, operator algebras are equally applicable to Galerkin discretizations of partial differential equations. The main difference here is that for large-scale three-dimensional problems an efficient LU decomposition of mass matrices may not always be possible.

Finally, we would like to stress that the underlying principle of this article and its implementation in Bempp is to allow the user of software libraries to work as closely to the mathematical formulation as possible. Ideally, a user treats operators as continuous objects and lets the software do the rest while the library ensures mathematical correctness. The framework proposed in this article and implemented in Bempp provides a step toward this goal.

While in this article we have focused on acoustic problems, the extension to Maxwell problems is straightforward and has been used in Reference [17].

ACKNOWLEDGMENTS

We thank David Hewett from University College London for many fruitful discussions on the functional analysis background of generalised Riesz maps and realisations of dual spaces. Section 3.1 is based on his comments and explanations. We also thank the referees for many helpful comments that improved the manuscript.

REFERENCES

Received June 2018; revised June 2019; accepted October 2019