mscroggs.co.uk
mscroggs.co.uk

subscribe

Blog

 2019-12-27 
In tonight's Royal Institution Christmas lecture, Hannah Fry and Matt Parker demonstrated how machine learning works using MENACE.
The copy of MENACE that appeared in the lecture was build and trained by me. During the training, I logged all the moved made by MENACE and the humans playing against them, and using this data I have created some visualisations of the machine's learning.
First up, here's a visualisation of the likelihood of MENACE choosing different moves as they play games. The thickness of each arrow represented the number of beads in the box corresponding to that move, so thicker arrows represent more likely moves.
The likelihood that MENACE will play each move.
There's an awful lot of arrows in this diagram, so it's clearer if we just visualise a few boxes. This animation shows how the number of beads in the first box changes over time.
The beads in the first box.
You can see that MENACE learnt that they should always play in the centre first, an ends up with a large number of green beads and almost none of the other colours. The following animations show the number of beads changing in some other boxes.
MENACE learns that the top left is a good move.
MENACE learns that the middle right is a good move.
MENACE is very likely to draw from this position so learns that almost all the possible moves are good moves.
The numbers in these change less often, as they are not used in every game: they are only used when the game reached the positions shown on the boxes.
We can visualise MENACE's learning progress by plotting how the number of beads in the first box changes over time.
The number of beads in MENACE's first box.
Alternatively, we could plot how the number of wins, loses and draws changes over time or view this as an animated bar chart.
The number of games MENACE wins, loses and draws.
The number of games MENACE has won, lost and drawn.
If you have any ideas for other interesting ways to present this data, let me know in the comments below.

Similar posts

Building MENACEs for other games
MENACE at Manchester Science Festival
MENACE
MENACE in fiction

Comments

Comments in green were written by me. Comments in blue were not written by me.
@(anonymous): Have you been refreshing the page? Every time you refresh it resets MENACE to before it has learnt anything.

It takes around 80 games for MENACE to learn against the perfect AI. So it could be you've not left it playing for long enough? (Try turning the speed up to watch MENACE get better.)
Matthew
                 Reply
I have played around menace a bit and frankly it doesnt seem to be learning i occasionally play with it and it draws but againt the perfect ai you dont see as many draws, the perfect ai wins alot more
(anonymous)
                 Reply
@Colin: You can set MENACE playing against MENACE2 (MENACE that plays second) on the interactive MENACE. MENACE2's starting numbers of beads and incentives may need some tweaking to give it a chance though; I've been meaning to look into this in more detail at some point...
Matthew
                 Reply
Idle pondering (and something you may have covered elsewhere): what's the evolution as MENACE plays against itself? (Assuming MENACE can play both sides.)
Colin
                 Reply
 Add a Comment 


I will only use your email address to reply to your comment (if a reply is needed).

Allowed HTML tags: <br> <a> <small> <b> <i> <s> <sup> <sub> <u> <spoiler> <ul> <ol> <li>
To prove you are not a spam bot, please type "prime" in the box below (case sensitive):

Archive

Show me a random blog post
 2021 

Jan 2021

Christmas (2020) is over
 2020 
▼ show ▼
 2019 
▼ show ▼
 2018 
▼ show ▼
 2017 
▼ show ▼
 2016 
▼ show ▼
 2015 
▼ show ▼
 2014 
▼ show ▼
 2013 
▼ show ▼
 2012 
▼ show ▼

Tags

world cup menace map projections geometry london squares matrix of cofactors matrix multiplication light wool estimation sorting inverse matrices big internet math-off christmas graphs wave scattering binary graph theory phd interpolation royal baby noughts and crosses ternary mathsteroids programming mathsjam matrices games data visualisation braiding twitter pi approximation day coins pizza cutting oeis python sound probability the aperiodical arithmetic harriss spiral christmas card books news cross stitch reddit weak imposition tennis dates stickers numerical analysis gerry anderson pi chebyshev curvature talking maths in public a gamut of games royal institution asteroids golden ratio frobel gaussian elimination logic countdown cambridge manchester rhombicuboctahedron raspberry pi radio 4 hats geogebra javascript convergence computational complexity polynomials misleading statistics boundary element methods reuleaux polygons statistics london underground puzzles signorini conditions dataset bempp determinants finite element method plastic ratio hannah fry bodmas platonic solids propositional calculus preconditioning trigonometry draughts sport pythagoras php video games logs speed flexagons sobolev spaces inline code matrix of minors folding tube maps craft triangles martin gardner bubble bobble game of life palindromes chalkdust magazine golden spiral folding paper quadrilaterals final fantasy accuracy advent calendar fractals approximation manchester science festival national lottery hexapawn go realhats latex pac-man mathslogicbot people maths ucl data football matt parker tmip european cup exponential growth chess weather station simultaneous equations electromagnetic field error bars captain scarlet nine men's morris dragon curves rugby machine learning game show probability

Archive

Show me a random blog post
▼ show ▼
© Matthew Scroggs 2012–2021