mscroggs.co.uk
mscroggs.co.uk

subscribe

Blog

 2019-12-27 
In tonight's Royal Institution Christmas lecture, Hannah Fry and Matt Parker demonstrated how machine learning works using MENACE.
The copy of MENACE that appeared in the lecture was build and trained by me. During the training, I logged all the moved made by MENACE and the humans playing against them, and using this data I have created some visualisations of the machine's learning.
First up, here's a visualisation of the likelihood of MENACE choosing different moves as they play games. The thickness of each arrow represented the number of beads in the box corresponding to that move, so thicker arrows represent more likely moves.
The likelihood that MENACE will play each move.
There's an awful lot of arrows in this diagram, so it's clearer if we just visualise a few boxes. This animation shows how the number of beads in the first box changes over time.
The beads in the first box.
You can see that MENACE learnt that they should always play in the centre first, an ends up with a large number of green beads and almost none of the other colours. The following animations show the number of beads changing in some other boxes.
MENACE learns that the top left is a good move.
MENACE learns that the middle right is a good move.
MENACE is very likely to draw from this position so learns that almost all the possible moves are good moves.
The numbers in these change less often, as they are not used in every game: they are only used when the game reached the positions shown on the boxes.
We can visualise MENACE's learning progress by plotting how the number of beads in the first box changes over time.
The number of beads in MENACE's first box.
Alternatively, we could plot how the number of wins, loses and draws changes over time or view this as an animated bar chart.
The number of games MENACE wins, loses and draws.
The number of games MENACE has won, lost and drawn.
If you have any ideas for other interesting ways to present this data, let me know in the comments below.

Similar posts

Building MENACEs for other games
MENACE at Manchester Science Festival
MENACE
MENACE in fiction

Comments

Comments in green were written by me. Comments in blue were not written by me.
@(anonymous): Have you been refreshing the page? Every time you refresh it resets MENACE to before it has learnt anything.

It takes around 80 games for MENACE to learn against the perfect AI. So it could be you've not left it playing for long enough? (Try turning the speed up to watch MENACE get better.)
Matthew
                 Reply
I have played around menace a bit and frankly it doesnt seem to be learning i occasionally play with it and it draws but againt the perfect ai you dont see as many draws, the perfect ai wins alot more
(anonymous)
                 Reply
@Colin: You can set MENACE playing against MENACE2 (MENACE that plays second) on the interactive MENACE. MENACE2's starting numbers of beads and incentives may need some tweaking to give it a chance though; I've been meaning to look into this in more detail at some point...
Matthew
                 Reply
Idle pondering (and something you may have covered elsewhere): what's the evolution as MENACE plays against itself? (Assuming MENACE can play both sides.)
Colin
                 Reply
 Add a Comment 


I will only use your email address to reply to your comment (if a reply is needed).

Allowed HTML tags: <br> <a> <small> <b> <i> <s> <sup> <sub> <u> <spoiler> <ul> <ol> <li>
To prove you are not a spam bot, please type "decagon" in the box below (case sensitive):

Archive

Show me a random blog post
 2021 

Jan 2021

Christmas (2020) is over
 2020 
▼ show ▼
 2019 
▼ show ▼
 2018 
▼ show ▼
 2017 
▼ show ▼
 2016 
▼ show ▼
 2015 
▼ show ▼
 2014 
▼ show ▼
 2013 
▼ show ▼
 2012 
▼ show ▼

Tags

boundary element methods binary signorini conditions hexapawn palindromes data visualisation estimation chess electromagnetic field puzzles pi craft sound london php phd statistics speed trigonometry noughts and crosses bodmas propositional calculus machine learning game show probability video games gerry anderson talking maths in public braiding hats tmip radio 4 finite element method sorting probability curvature frobel pythagoras logic rhombicuboctahedron mathsjam arithmetic golden ratio python cambridge geometry geogebra manchester sport hannah fry simultaneous equations asteroids royal institution menace error bars national lottery pac-man folding tube maps stickers latex fractals chalkdust magazine preconditioning matt parker numerical analysis accuracy nine men's morris tennis inline code mathsteroids golden spiral bempp advent calendar dates royal baby chebyshev matrix multiplication javascript mathslogicbot world cup big internet math-off martin gardner matrix of minors game of life news polynomials games convergence matrices christmas card wool the aperiodical data oeis weak imposition european cup rugby people maths bubble bobble light twitter a gamut of games christmas final fantasy matrix of cofactors graphs ternary exponential growth manchester science festival map projections reuleaux polygons flexagons reddit quadrilaterals coins interpolation folding paper ucl harriss spiral sobolev spaces determinants plastic ratio countdown london underground gaussian elimination cross stitch inverse matrices go computational complexity books wave scattering draughts weather station pizza cutting raspberry pi programming pi approximation day approximation misleading statistics dataset triangles football squares captain scarlet platonic solids dragon curves logs graph theory realhats

Archive

Show me a random blog post
▼ show ▼
© Matthew Scroggs 2012–2021