mscroggs.co.uk
mscroggs.co.uk

subscribe

Blog

 2017-03-27 
Tomorrow, the new 12-sided one pound coin is released.
Although I'm excited about meeting this new coin, I am also a little sad, as its release ends the era in which all British coins are shapes of constant width.

Shapes of constant width

A shape of constant width is a shape that is the same width in every direction, so these shapes can roll without changing height. The most obvious such shape is a circle. But there are others, including the shape of the seven-sided 50p coin.
As shown below, each side of a 50p is part of a circle centred around the opposite corner. As a 50p rolls, its height is always the distance between one of the corners and the side opposite, or in other words the radius of this circle. As these circles are all the same size, the 50p is a shape of constant width.
Shapes of constant width can be created from any regular polygon with an odd number of sides, by replacing the sides by parts of circles centred at the opposite corner. The first few are shown below.
It's also possible to create shapes of constant width from irregular polygons with an odd number, but it's not possible to create them from polygons with an even number of sides. Therefore, the new 12-sided pound coin will be the first non-constant width British coin since the (also 12-sided) threepenny bit was phased out in 1971.
Back in 2014, I wrote to my MP in an attempt to find out why the new coin was not of a constant width. He forwarded my letter to the Treasury, but I never heard back from them.

Pizza cutting

When cutting a pizza into equal shaped pieces, the usual approach is to cut along a few diameters to make triangles. There are other ways to fairly share pizza, including the following (that has appeared here before as an answer to this puzzle):
The slices in this solution are closely related to a triangle of constant width. Solutions can be made using other shapes of constant width, including the following, made using a constant width pentagon and heptagon (50p):
There are many more ways to cut a pizza into equal pieces. You can find them in Infinite families of monohedral disk tilings by Joel Haddley and Stephen Worsley [1].
You can't use the shape of a new pound coin to cut a pizza though.
Edit: Speaking of new £1 coins, I made this stupid video with Adam "Frownsend" Townsend about them earlier today:

Infinite families of monohedral disk tilings by Joel Haddley and Stephen Worsley. December 2015. [link]

Similar posts

New machine unfriendly £1 coin, pt. 2
New machine unfriendly £1 coin
World Cup stickers 2018, pt. 3
World Cup stickers 2018, pt. 2

Comments

Comments in green were written by me. Comments in blue were not written by me.
 Add a Comment 


I will only use your email address to reply to your comment (if a reply is needed).

Allowed HTML tags: <br> <a> <small> <b> <i> <s> <sup> <sub> <u> <spoiler> <ul> <ol> <li>
To prove you are not a spam bot, please type "v" then "e" then "c" then "t" then "o" then "r" in the box below (case sensitive):

Archive

Show me a random blog post
 2020 

Jan 2020

Christmas (2019) is over
 2019 
▼ show ▼
 2018 
▼ show ▼
 2017 
▼ show ▼
 2016 
▼ show ▼
 2015 
▼ show ▼
 2014 
▼ show ▼
 2013 
▼ show ▼
 2012 
▼ show ▼

Tags

rhombicuboctahedron games reuleaux polygons light people maths pizza cutting stickers estimation pac-man php game of life fractals wool asteroids misleading statistics ternary football hannah fry gerry anderson realhats world cup tennis platonic solids weather station mathslogicbot talking maths in public cambridge nine men's morris map projections electromagnetic field trigonometry programming bodmas error bars countdown frobel royal baby braiding twitter latex folding tube maps matt parker christmas card final fantasy a gamut of games craft machine learning video games books flexagons python london underground game show probability draughts data interpolation go manchester christmas sport triangles menace bubble bobble logic palindromes hexapawn graph theory rugby captain scarlet folding paper big internet math-off speed dates inline code statistics polynomials martin gardner noughts and crosses advent calendar accuracy london hats plastic ratio raspberry pi cross stitch manchester science festival sound national lottery pythagoras reddit radio 4 chalkdust magazine golden spiral approximation dataset data visualisation coins sorting chess golden ratio tmip binary news curvature dragon curves royal institution puzzles arithmetic european cup chebyshev geometry harriss spiral propositional calculus mathsjam probability mathsteroids oeis javascript the aperiodical

Archive

Show me a random blog post
▼ show ▼
© Matthew Scroggs 2012–2020