# Blog

**2017-03-27**

Tomorrow, the new 12-sided one pound coin is released.

Although I'm excited about meeting this new coin, I am also a little sad,
as its release ends the era in which all British coins are shapes of constant
width.

### Shapes of constant width

A shape of constant width is a shape that is the same width in every direction,
so these shapes can roll without changing height. The most obvious such shape
is a circle. But there are others, including the shape of the seven-sided 50p
coin.

As shown below, each side of a 50p is part of a circle centred around the opposite corner.
As a 50p rolls, its height is always the distance between one of the corners and
the side opposite, or in other words the radius of this circle. As these circles
are all the same size, the 50p is a shape of constant width.

Shapes of constant width can be created from any regular polygon with an
odd number of sides, by replacing the sides by parts of circles centred at the
opposite corner. The first few are shown below.

en wiki user LEMeZza, CC BY-SA 3.0

It's also possible to create shapes of constant width from irregular polygons with an odd number,
but it's not possible to create them from polygons with an even number of sides.
Therefore, the new 12-sided pound coin will be the first non-constant width British coin since
the (also 12-sided) threepenny bit was phased out in 1971.

Back in 2014, I wrote to my MP in an attempt to find
out why the new coin was not of a constant width. He forwarded my letter to
the Treasury, but I never heard back from them.

### Pizza cutting

When cutting a pizza into equal shaped pieces, the usual approach is to
cut along a few diameters to make triangles. There are other ways to fairly
share pizza, including the following (that has appeared here before as an answer to this puzzle):

The slices in this solution are closely related to a triangle of constant
width. Solutions can be made using other shapes of constant width,
including the following, made using a constant width pentagon and heptagon (50p):

There are many more ways to cut a pizza into equal pieces. You can find them in

*Infinite families of monohedral disk tilings*by Joel Haddley and Stephen Worsley [1].You can't use the shape of a new pound coin to cut a pizza though.

Edit: Speaking of new £1 coins, I made this stupid video with Adam "Frownsend" Townsend about them earlier today:

#### References

[1]

**by***Infinite families of monohedral disk tilings***Joel Haddley and Stephen Worsley**. December 2015. [link]### Similar posts

New machine unfriendly £1 coin, pt. 2 | New machine unfriendly £1 coin | World Cup stickers 2018, pt. 3 | World Cup stickers 2018, pt. 2 |

### Comments

Comments in green were written by me. Comments in blue were not written by me.

## Archive

Show me a random blog post**2019**

### Sep 2019

A non-converging LaTeX documentTMiP 2019 treasure punt

### Jul 2019

Big Internet Math-Off stickers 2019### Jun 2019

Proving a conjecture### Apr 2019

Harriss and other spirals### Mar 2019

realhats### Jan 2019

Christmas (2018) is over**2018**

**2017**

**2016**

**2015**

**2014**

**2013**

**2012**

## Tags

london geometry manchester science festival mathslogicbot puzzles pizza cutting martin gardner folding tube maps nine men's morris dragon curves curvature binary javascript braiding sound books tmip php wool game of life realhats error bars latex frobel bodmas radio 4 flexagons manchester gerry anderson pac-man speed python games graph theory interpolation palindromes christmas card menace trigonometry twitter dataset fractals reddit go folding paper reuleaux polygons news draughts coins rugby logic final fantasy mathsjam data arithmetic harriss spiral chebyshev game show probability map projections chess pythagoras world cup inline code the aperiodical probability a gamut of games cross stitch sorting cambridge asteroids hats christmas plastic ratio stickers ternary statistics light football electromagnetic field captain scarlet platonic solids big internet math-off sport matt parker polynomials estimation approximation weather station craft london underground propositional calculus accuracy royal baby programming dates hexapawn video games national lottery countdown chalkdust magazine rhombicuboctahedron golden spiral oeis golden ratio people maths european cup triangles raspberry pi tennis mathsteroids misleading statistics bubble bobble talking maths in public noughts and crosses machine learning**© Matthew Scroggs 2019**

Add a Comment