mscroggs.co.uk
mscroggs.co.uk

subscribe

Blog

 2012-10-06 
This is the first post in a series of posts about tube map folding.
This week, after re-reading chapter two of Alex's Adventures in Numberland (where Alex learns to fold business cards into tetrahedrons, cubes and octahedrons) on the tube, I folded two tube maps into a tetrahedron:
Following this, I folded a cube, an octahedron and an icosahedron:
The tetrahedron, icosahedron and octahedron were all made in the same way, as seen in Numberland: folding the map in two, so that a pair of opposite corners meet, then folding the sides over to make a triangle:
In order to get an equilateral triangle at this point, paper with sides in a ratio of 1:√3 is required. Although it is not exact, the proportions of a tube map are close enough to this to get an almost equilateral triangle. Putting one of these pieces together with a mirror image piece (one where the other two corners were folded together at the start) gives a tetrahedron. The larger solids are obtained by using a larger number of maps.
The cube—also found in Numberland—can me made by placing two tube maps on each other at right angles and folding over the extra length:
Six of these pieces combine to give a cube.
Finally this morning, with a little help from the internet, I folded a dodecahedron, thus completing all the Platonic solids:
To spread the joy of folding tube maps, each time I take the tube, I am going to fold a tetrahedron from two maps and leave it on the maps when I leave the tube. I started this yesterday, leaving a tetrahedron on the maps at South Harrow. In the evening, it was still there:
Do you think it will still be there on Monday morning? How often do you think I will return to find a tetrahedron still there? I will be keeping a tetrahedron diary so we can find out the answers to these most important questions...
This is the first post in a series of posts about tube map folding.
Next post in series
Tube map Platonic solids, pt. 2

Similar posts

Tube map Platonic solids, pt. 3
Tube map Platonic solids, pt. 2
Tube map kaleidocycles
Tube map stellated rhombicuboctahedron

Comments

Comments in green were written by me. Comments in blue were not written by me.
New test comment please ignore
Matthew
×1   ×1   ×1   ×2   ×1     Reply
Test comment please ignore
Matthew
×1   ×1   ×1   ×2   ×1     Reply
 Add a Comment 


I will only use your email address to reply to your comment (if a reply is needed).

Allowed HTML tags: <br> <a> <small> <b> <i> <s> <sup> <sub> <u> <spoiler> <ul> <ol> <li>
To prove you are not a spam bot, please type "bisect" in the box below (case sensitive):

Archive

Show me a random blog post
 2020 

May 2020

A surprising fact about quadrilaterals
Interesting tautologies

Mar 2020

Log-scaled axes

Feb 2020

PhD thesis, chapter ∞
PhD thesis, chapter 5
PhD thesis, chapter 4
PhD thesis, chapter 3
Inverting a matrix
PhD thesis, chapter 2

Jan 2020

PhD thesis, chapter 1
Gaussian elimination
Matrix multiplication
Christmas (2019) is over
 2019 
▼ show ▼
 2018 
▼ show ▼
 2017 
▼ show ▼
 2016 
▼ show ▼
 2015 
▼ show ▼
 2014 
▼ show ▼
 2013 
▼ show ▼
 2012 
▼ show ▼

Tags

twitter approximation arithmetic video games game of life estimation nine men's morris final fantasy sound sorting graphs wool polynomials stickers reddit accuracy games braiding matrix of cofactors talking maths in public graph theory gerry anderson tennis raspberry pi exponential growth signorini conditions pizza cutting inline code royal baby electromagnetic field finite element method hexapawn captain scarlet sobolev spaces radio 4 golden ratio big internet math-off hats bempp draughts probability sport squares european cup bubble bobble simultaneous equations golden spiral mathsteroids javascript error bars news weak imposition craft rugby computational complexity manchester science festival hannah fry geogebra flexagons python london puzzles a gamut of games convergence data fractals folding tube maps binary preconditioning phd determinants numerical analysis pac-man reuleaux polygons matrix multiplication dataset frobel rhombicuboctahedron christmas card chess trigonometry matrices map projections logic interpolation matrix of minors realhats dates cross stitch gaussian elimination christmas quadrilaterals london underground php advent calendar light misleading statistics latex books mathslogicbot people maths curvature weather station triangles platonic solids boundary element methods wave scattering statistics bodmas geometry tmip royal institution countdown propositional calculus data visualisation menace folding paper logs palindromes football martin gardner programming plastic ratio world cup ucl national lottery chebyshev dragon curves harriss spiral machine learning matt parker the aperiodical manchester asteroids pythagoras noughts and crosses inverse matrices speed game show probability go mathsjam oeis ternary cambridge chalkdust magazine coins

Archive

Show me a random blog post
▼ show ▼
© Matthew Scroggs 2012–2020