MATH6103 Differential & Integral Calculus MATH6500 Elementary Mathematics for Engineers

Problem Sheet 9

Deadline: Monday 12 December, 5:00.

Hand in to **the drop box** in the undergraduate common room (maths department, room 502).

Hand in the questions marked with an asterisk (*).

One mark will be deducted if you do not staple your work.

1) Solve the following second order ODEs.

a)
$$\frac{d^2y}{dx^2} + \frac{dy}{dx} - 6y = 0$$

* b) $\frac{d^2y}{dx^2} + \frac{dy}{dx} - 6y = e^x$
* c) $\frac{d^2y}{dx^2} + \frac{dy}{dx} - 6y = e^{2x}$
d) $\frac{d^2y}{dx^2} + 7\frac{dy}{dx} + 10y = e^{-x}$
e) $\frac{d^2y}{dx^2} + 11\frac{dy}{dx} + 10y = 3e^{-x}$
* f) $\frac{d^2y}{dx^2} + 6\frac{dy}{dx} + 18y = 34e^x$

2) Solve the following second order ODEs with boundary conditions.

* a)
$$\frac{d^2y}{dx^2} - 3\frac{dy}{dx} + 2y = 6e^{3x}$$
, $y(0) = 3$ $y'(0) = 8$
* b) $\frac{d^2y}{dx^2} - 2\frac{dy}{dx} + y = e^x$, $y(0) = 3$, $y'(0) = 3$ $y(1) = \frac{7e}{2}$
c) $\frac{d^2y}{dx^2} + 6\frac{dy}{dx} + 18y = 34e^x$ $y(3)$ $y\left(\frac{\pi}{6}\right) = 2e^{\frac{\pi}{6}}$

* 3a) Use Euler's Method with three steps to approximate y(1) when y(0) = 3 and

$$\frac{dy}{dx} = y + 6x.$$

Give your answer as a fraction.

* 3b) Give one way in which the accuracy of the answer to (3a) could be improved.