MATH6103 Differential & Integral Calculus MATH6500 Elementary Mathematics for Engineers

Problem Sheet 7

Deadline: Monday 28 November, 5:00.

Hand in to **the drop box** in the undergraduate common room (maths department, room 502).

Hand in the questions marked with an asterisk (*).

One mark will be deducted if you do not staple your work.

1) Use separation of variables to find the general solutions of the following:

a)
$$\frac{dy}{dx} = \frac{1}{x^2}$$

b) $\frac{dy}{dx} = \frac{y}{x}$
* d) $\frac{dy}{dx} = 2xy$
e) $xy\frac{dy}{dx} = \frac{1+x^2}{1+y}$
* c) $2x\cos y = (x^2-3)\sec y\frac{dy}{dx}$
* f) $\frac{dx}{dy} + \frac{1}{x^2} = 0$ [Notice: $\frac{dx}{dy}$, not $\frac{dy}{dx}$]

2) Use integrating factors to find the general solutions of the following:

a) $\frac{dy}{dx} + 2y = 1$ * b) $\frac{dy}{dx} + 2xy = 2x$ (Hint: to integrate $\tan x$, use $u = \sec x$] * e) $x^2 \frac{dy}{dx} + xy + 1 = 0$ (f) $e^x \frac{dy}{dx} = 1 - ye^x$

3) Solve the following initial value problems:

a)
$$\frac{dy}{dx} + 2y = 1$$
, $y(0) = 0$
b) $\frac{dy}{dx} = \frac{1}{x^2}$, $y(1) = 8$
* e) $e^{-x}\frac{dy}{dx} + y = 1$, $y(0) = 1$
* c) $\frac{dy}{dx} + \frac{y}{x} = 6$, $y(1) = 4$
* f) $\frac{dy}{dx} = (xy)^2$, $y(1) = 1$