MATH6103 Differential & Integral Calculus MATH6500 Elementary Mathematics for Engineers

Problem Sheet 2

Deadline: Monday 17 October, 5:00.

Hand in to **the drop box** in the undergraduate common room (maths department, room 502).

Hand in the questions marked with an asterisk (*).

One mark will be deducted if you do not staple your work.

- 1) Without a calculator, find the value of $\tan \theta$ when:
- * a) $\cot \theta = \frac{1}{2}$

b)
$$\theta = \frac{\pi}{4}$$

- * c) $\sec \theta = 4$ and $\tan \theta$ is positive
- * d) $\cos \theta = \frac{3}{5}$ and $\sin \theta$ is negative
 - e) $\sin \theta = \frac{1}{2}$ and $\cos \theta$ is positive

2) Write each of the following in the form 2^r , where $r \in \mathbb{R}$:

* a) $\sqrt{2}$ b) $2^5 \times 4^2$ * c) $\sin \frac{\pi}{4}$ * d) $3 \times 2^4 - 2^4$ e) $2^5 - 2^4$ * f) 1

* 3) Find all solutions to $(x^2 - 9x + 9)^{(x^2 + x - 6)} = 1.$

- 4) Using $f'(x) = \lim_{h \to 0} \frac{f(x+h) f(x)}{h}$ to find f'(x) for each of the following:
 - a) f(x) = 1
 - b) f(x) = x
- * c) f(x) = g(x) + h(x) [Give your answer in terms of g(x), g'(x), h(x) and h'(x)]
 * d) f(x) = x²

Challenge) $f(x) = \sin x$ [When h is small, you may assume $\sin h \approx h$ and $\cos h \approx 1 - h^2$]