MATH6103 Differential & Integral Calculus MATH6500 Elementary Mathematics for Engineers

Problem Sheet 2 Mark Scheme

1) Without a calculator, find the value of $\tan \theta$ when:

* a) $\cot \theta = \frac{1}{2} [1 \text{ mark}]$

$$\tan \theta = \frac{1}{\cot \theta} = 2$$

* c) $\sec \theta = 4$ and $\tan \theta$ is positive [1 mark]

$$\tan^2 \theta = \sec^2 \theta - 1$$
$$= 15$$
$$\tan \theta = \sqrt{15}$$

* d) $\cos \theta = \frac{3}{5}$ and $\sin \theta$ is negative [1 mark]

$$\sin \theta = \sqrt{1 - \cos^2 \theta}$$
$$= \sqrt{1 - \frac{9}{25}}$$
$$= \sqrt{\frac{16}{25}}$$
$$= -\frac{4}{5}$$
$$\tan \theta = \frac{\sin \theta}{\cos \theta}$$
$$= \frac{-4/5}{3/5}$$
$$= -\frac{4}{3}$$

- 2) Write each of the following in the form 2^r , where $r \in \mathbb{R}$:
- * a) $\sqrt{2} \left[\frac{1}{2} \text{ mark}\right]$

$$\sqrt{2} = 2^{\frac{1}{2}}$$

* c) $\sin \frac{\pi}{4} \left[\frac{1}{2} \text{ mark}\right]$

$$\sin\frac{\pi}{4} = \frac{1}{\sqrt{2}}$$
$$= 2^{-\frac{1}{2}}$$

* d) $3 \times 2^4 - 2^4 \left[\frac{1}{2} \text{ mark}\right]$

$$3 \times 2^4 - 2^4 = 2 \times 2^4$$
$$= 2^5$$

* f) 1 $[\frac{1}{2} \text{ mark}]$

 $1 = 2^{0}$

* 3) Find all solutions to $(x^2 - 9x + 9)^{(x^2 + x - 6)} = 1$. [2 marks]

Case 1:
$$x^2 - 9x + 9 = 1$$

 $x^2 - 9x + 8 = 0$
 $(x - 8)(x - 1) = 0$
 $x = 1 \text{ or } 8$
Case 2: $x^2 + x - 6 = 0$
 $(x + 3)(x - 2) = 0$
 $x = -3 \text{ or } 2$
Case 3: $x^2 - 9x + 9 = -1$ and $x^2 + x - 6$ is even
 $x^2 - 9x + 10 = 0$
 $x = \frac{-9 \pm \sqrt{41}}{2}$

At the values of x in case 3, $x^2 + x - 6$ is not a whole number, so case 3 has no solutions. All solutions: x = -3, 1, 2, 8

[Atheeta: Give full marks if case 3 is ignored, as long as all four solutions found.]

4) Using $f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$ to find f'(x) for each of the following:

* c) f(x) = g(x) + h(x) [2 marks]

$$f'(x) = \lim_{k \to 0} \frac{f(x+k) - f(x)}{k}$$

= $\lim_{k \to 0} \frac{g(x+k) + h(x+k) - g(x) - h(x)}{k}$
= $\lim_{k \to 0} \frac{g(x+k) - g(x)}{k} + \lim_{k \to 0} \frac{h(x+k) - h(x)}{k}$
= $g'(x) + h'(x)$

* d) $f(x) = x^2 [1 \text{ mark}]$

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

=
$$\lim_{h \to 0} \frac{(x+h)^2 - x^2}{h}$$

=
$$\lim_{h \to 0} \frac{x^2 + 2xh + h^2 - x^2}{h}$$

=
$$\lim_{h \to 0} (2x+h)$$

=
$$2x$$