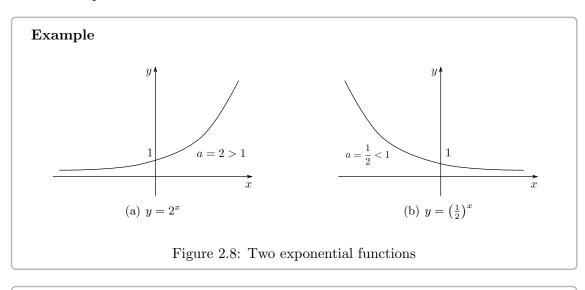
2.6 Exponentials & Logarithms

An exponential function is a function of the form

$$f(x) = a^x,$$

where a is a positive constant.



Properties If a > 1, f(x) increases as x increases. If a < 1, f(x) decreases as x increases. If a = 1, f(x) = 1. $a^0 = 1$ for each a, so the graph always passes through the point (0, 1).

2.6.1 The gradient of e^x

First let us consider the gradient of a^x at x = 0.

Example Suppose we have $f(x) = 2^x$, then applying the definition of the derivative we have $f'(0) = \lim_{h \to 0} \frac{f(0+h) - f(0)}{h} = \lim_{h \to 0} \frac{2^h - 1}{h}.$ $\frac{\boxed{h} \quad f'(0) \approx}{0.1 \quad 0.7177}}{0.01 \quad 0.6955}$ $0.001 \quad 0.6933}{0.0001 \quad 0.6932}$ So for $f(x) = 2^x$, (a = 2), we have slope ≈ 0.693 at x = 0. Similarly, for $f(x) = 3^x$, (a = 3), we have slope ≈ 1.698 at x = 0.

Therefore, we expect that there is a number between 2 and 3 such that the slope at x = 0is 1. This number is called e, where $e \approx 2.718281828459...$ The number e is irrational.

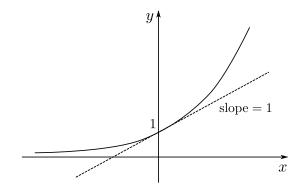


Figure 2.9: Graph of $y = e^x$, which has a gradient of 1 at x = 0.

The fact that the slope is 1 at x = 0 tells us that

Property

$$\frac{e^h - e^0}{h} = \frac{e^h - 1}{h} \to 1, \text{ as } h \to 0.$$

Definition We call $f(x) = e^x = \exp(x)$ the **exponential function**.

 $\frac{d}{dx}(e^x) = e^x.$ *Proof:* To find the gradient at x = c, we need to look at $f'(c) = \lim_{h \to 0} \frac{f(c+h) - f(c)}{h}$ $= \lim_{h \to 0} \frac{e^{c+h} - e^c}{h}$ $=\lim_{k \to \infty} \frac{e^c(e^h - 1)}{r}$

$$= e^{c} \lim_{h \to 0} \frac{e^{h} - 1}{h}$$
$$= e^{c},$$

Example To find

$$\frac{d}{dx}\left(e^{\sqrt{1+x}}\right)$$

we must use the chain rule. Choose $g(x) = \sqrt{1+x}$ and $f(u) = e^u$, so we have $g'(x) = \frac{1}{2}(1+x)^{-\frac{1}{2}}$ and $f'(u) = e^u$.

$$\frac{d}{dx} \left(e^{\sqrt{1+x}} \right) = f'(g(x))g'(x) = e^{\sqrt{1+x}} \cdot \frac{1}{2}(1+x)^{-\frac{1}{2}} = \frac{e^{\sqrt{1+x}}}{2\sqrt{1+x}}.$$

2.6.2 Logarithms

Definition

The inverse of an exponential function is called a **logarithm** or **log**. The inverse of a^x is written as $\log_a x$ and is defined such that

 $a^{\log_a x} = x.$

Example

$$\begin{split} \log_{10}(1000) &= 3 \text{ because } 10^3 = 1000.\\ \log_2(16) &= 4 \text{ because } 2^4 = 16.\\ \log_{10}(2) &= 0.301... \text{ because } 10^{0.301...} = 2. \end{split}$$

Laws of Logs

The following properties hold for logarithms:

- 1. $\log_a(MN) = \log_a M + \log_a N.$
- 2. $\log_a(M^p) = p \log_a M$.

Logarithms are used among other things to solve exponential equations.

Example Find x, given $3^x = 7$. Taking the logarithm of both sides we have $\ln(3^x) = \ln 7 \implies x \ln 3 = \ln 7$. Rearranging we have $x = \frac{\ln 3}{\ln 7} \approx \frac{1.95}{1.10} \approx 1.77$.

The natural logarithm

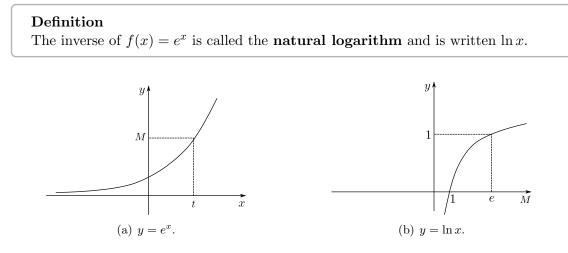


Figure 2.10: Graphs of the exponential functions and the natural logarithm.

2.6.3 Differentiation of other exponentials

Example In order to differentiate 3^x , we must express it in terms of e^x :

$$3 = e^{\ln 3} \quad \Longrightarrow \quad 3^x = (e^{\ln 3})^x = e^{x \ln 3}$$

Therefore we calculate the derivative of 3^x as follows:

$$\frac{d}{dx}(3^x) = \frac{d}{dx}(e^{x\ln 3})$$
$$= e^{x\ln 3} \cdot \ln 3$$
$$= 3^x \cdot \ln 3.$$

In general, for any positive constant a

$$\frac{d}{dx}(a^x) = a^x \ln a.$$