1.5 Exponentials

We have seen functions of the form $f(x) = x^a$, where a is a constant. What happens if we swap the a and the x and look at $f(x) = a^x$?

First, let's look at what a^x means for all values of $x \in \mathbb{R}$.

1.5.1 Indices

when we wish to multiply a number by itself several times, we make use of index or power notation. We have notation for powers (for $a \in \mathbb{R}$:

$$a^{2} = a \cdot a$$

$$a^{3} = a \cdot a \cdot a$$

$$a^{x} = \overbrace{a \cdot a \cdot a \cdot a}^{x} \quad x \in \mathbb{N} \text{ and } x \neq 0$$

Here, a is called the **base** and x is called the **index** or **power**. We also know the following properties:

Properties of exponents For any $a \in \mathbb{R}$ and $x, y \in \mathbb{R}$ 1. $a^{x+y} = a^x \cdot a^y$ 2. $(a^x)^y = a^{xy}$ 3. $a^x \cdot b^x = (ab)^x$

Examples

1. $2^5 = 2 \cdot 2 \cdot 2 \cdot 2 \cdot 2 = 2^3 \cdot 2^2$. 2. $3^6 = 3^{2 \times 3} = 3 \cdot 3 \cdot 3 \cdot 3 \cdot 3 \cdot 3 = 3^2 \cdot 3^2 \cdot 3^2 = (3^2)^3$. 3. $2^3 \cdot 3^3 = 2 \cdot 2 \cdot 2 \cdot 3 \cdot 3 \cdot 3 = (2 \cdot 3)(2 \cdot 3)(2 \cdot 3) = (2 \cdot 3)^3$.

We can use the properties of exponents to justify the definitions of a^x when x is not a positive integer. Throughout this we will assume that a > 0.

For $x \in \mathbb{Z}$

For x = 0, we notice that:

$$a^2 = a^{2+0}$$
$$= a^2 \cdot a^0$$

This shows that:

 $a^{0} = 1$

When x is a negative integer:

$$1 = a^{0}$$
$$= a^{x-x}$$
$$= a^{x} \cdot a^{-x}$$

Dividing by a^x , we get:

 $a^{-x} = \frac{1}{a^x}$

For $x \in \mathbb{Q}$ (the set of all fractions)

For $x = \frac{1}{n}$, notice that:

$$\left(a^{\frac{1}{n}}\right)^n = a^{\frac{1}{n} \cdot n}$$
$$= a^1$$
$$= a$$

Taking the nth root gives:

 $a^{\frac{1}{n}} = \sqrt[n]{a}$

Similarly, we find that

 $a^{\frac{m}{n}} = \left(\sqrt[n]{a}\right)^m$

For $x \in \mathbb{R}$

If x is an irrational number, then, for any small number $\epsilon > 0$ we can always find two rational numbers c and d which satisfy $x - \epsilon < c < x < d < x + \epsilon$. a^x is defined to be the limit of a^c (or a^d) as $\epsilon \to 0$.

Finally, an exponential function can be defined by

$$f(x) = a^x, \quad x \in \mathbb{R}$$

where a is a positive constant. The domain of f is \mathbb{R} and the range is \mathbb{R}^+ .

If a < 1, it is common to define $b = \frac{1}{a}$. f can then be written as $f(x) = b^{-x}$ with b > 1. The graph of f is as follows:

Figure 1.5: Comparison of exponent graphs for different values of a.

There is also a special exponential function, $f = e^x$, we will investigate this further later in the course.