1.4.4 Complex numbers

To allow ourselves to solve all quadratics, not just those with real roots, we introduce i:

Definition: i

 $i = \sqrt{-1}$

Numbers of the form bi are called imaginary numbers. Numbers of the form a + bi are called complex numbers. They can be used as follows:

Example		
To solve $x^2 + 4 = 0$:		
	$x^2 + 4 = 0$	
	$x^2 = -4$	
	$x = \pm \sqrt{-4}$	
	x = 2i or -2i	
To solve $x^2 + 6x + 13 = 0$:		
	$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$	
	$= \frac{-6 \pm \sqrt{36 - 4 \times 13}}{2}$	
	$=\frac{-6\pm\sqrt{-16}}{2}$	
	$=\frac{-6\pm4\mathrm{i}}{1-1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1$	
	2 = -3 + 2i or -3 - 2i	
	= -3 + 2i or -3 - 2i	

To add, multiply and subtract complex numbers, treat i like a variable and remember that $i^2 = -1$:

Example

$$(2 + 4i) + (3 - 2i) = 5 + 2i$$

 $(2 + 4i) \times (3 - 2i) = 6 + 12i - 4i - 8i^2$
 $= 6 + 12i - 4i + 8$
 $= 14 + 8i$