MATH6103 Differential & Integral Calculus

Progress Checking Test Solutions

1) Find
$$\frac{dy}{dx}$$
 when $y = e^{\sin x}$
By the chain rule:
 $\frac{d}{dx} [e^{\sin x}] = e^{\sin x} \cdot \frac{d}{dx} [\sin x]$
 $= e^{\sin x} \cdot \cos x$
2) Find $\frac{dy}{dx}$ when $y = e^x \sin x$
By the product rule:
 $\frac{d}{dx} [e^x \sin x] = e^x \frac{d}{dx} [\sin x] + \sin x \frac{d}{dx} [e^x]$
 $= e^x \cos x + e^x \sin x$
3) Find $\frac{dy}{dx}$ when $y = \sin(e^x)$
By the chain rule:

$$\frac{d}{dx} \left[\sin(e^x) \right] = \cos(e^x) \frac{d}{dx} \left[e^x \right]$$
$$= e^x \cos(e^x)$$

A satellite is orbiting the moon. Its position can be described in polar co-ordinates by the equation

$$r = \frac{300}{2 + \cos\theta}$$

where r is the distance from the moon (in km) and θ is the angle (in radians).

4a) Find $\frac{dr}{d\theta}$. $r = \frac{300}{2 + \cos \theta}$ $= 300(2 + \cos \theta)^{-1}$ By the chain rule: $\frac{d}{dx} \left[300(2 + \cos \theta)^{-1} \right] = 300 \frac{d}{dx} \left[(2 + \cos \theta)^{-1} \right]$ $= 300 \cdot -(2 + \cos \theta)^{-2} \frac{d}{dx} \left[2 + \cos \theta \right]$ $= 300 \cdot -(2 + \cos \theta)^{-2} \cdot -\sin \theta$ $= \frac{300 \sin \theta}{(2 + \cos \theta)^{2}}$

[The could instead have been done by the quotient rule.]

4b) Solve
$$\frac{dr}{d\theta} = 0.$$

The equation

 $\frac{300\sin\theta}{(2+\cos\theta)^2} = 0$

is zero when $\sin \theta = 0$. $\sin \theta = 0$ when:

 $\theta = 0, \pi, 2\pi, 3\pi, \dots$

4c) Find the minimum distance from the moon which the satellite reaches during its orbit.

During one orbit, θ goes from 0 to 2π . In this range, the minimum must be at either $\theta = 0$ or $\theta = \pi$. When $\theta = 0$, r = 100 km. When $\theta = \pi$, r = 300 km. Therfore the minimum distance is 100 km.