MATH6103 Differential & Integral Calculus MATH6500 Elementary Mathematics for Engineers

Problem Sheet 5

Deadline: Monday 16 November, 5:00.

Hand in to drop box 5 in the undergraduate common room (maths department, room 502).

Hand in the questions marked with an asterisk (*).

One mark will be deducted if you do not staple your work.

1) Find:

- g) $\int \sin x + \sec^2 x \, dx$ a) $\int 4x + 5x^4 dx$ * h) $\int (7x+7)^2 dx$ * b) $\int 3x^3 - 8x^2 dx$ * i) $\int_{0}^{2} (7x+7)^{2} dx$ c) $\int e^x - \sin x \, dx$ d) $\int \sin(3x+4) \, dx$ (Hint: Let u = 3x+4) j) $\int \frac{1}{2x+1} dx$ e) $\int \cos(8x - 4) dx$ (Hint: Let u = 8x - 4) f) $\int \tan x dx$ (Hint: Write $\tan x \operatorname{as} \frac{\sin x}{\cos x}$) h) $\int \frac{\pi}{2x+1} dx$ h) $\int \sqrt{4x-8} dx$ h) $\int \frac{\pi}{2} \cos x \sqrt{\sin x} dx$

2) A projectile is fired vertically upwards.

Its velocity, v(t), (in ms^{-1}) at time t (in s) is given by:

$$v(t) = 50 - 9.8t$$

Calculate:

- * a) the time, T_0 , at which the projectile's velocity is 0.
- * b) the distance the projectile travels in the first 5 seconds.
- * c) the highest height which the projectile reaches.

[Hints: (b) is given by $\int_0^5 v(t) dt$ and (c) is given by $\int_0^{T_0} v(t) dt$.]