MATH6103 Differential & Integral Calculus MATH6500 Elementary Mathematics for Engineers

Problem Sheet 4 Solutions

1) Find $\frac{dy}{dx}$ when:

a)
$$y = \sin^{-1} x$$

$$y = \sin^{-1} x$$

$$x = \sin y$$

$$\frac{dx}{dy} = \cos y$$

$$\frac{dy}{dx} = \frac{1}{\cos y}$$

$$\frac{dy}{dx} = \frac{1}{\cos \sin^{-1} x}$$

$$\frac{dy}{dx} = \frac{1}{\sqrt{1 - x^2}}$$

b) $y = \ln x + \sec x$

$$y = \ln x + \sec x$$

= $\ln x + (\cos x)^{-1}$
$$\frac{dy}{dx} = \frac{1}{x} + -1 \cdot (\cos x)^{-2} \cdot -\sin x$$

= $\frac{1}{x} + \frac{\sin x}{\cos^2 x}$

c)
$$y = \sin^{-1}(e^x)$$

Using the chain rule and (a): $\frac{dy}{dx} = \frac{1}{\sqrt{1-(e^x)^2}} \cdot e^x$ $= \frac{e^x}{\sqrt{1-e^{2x}}} \cdot e^x$

d) $y = \frac{1}{\ln x}$

$$y = (\ln x)^{-1}$$
$$\frac{dy}{dx} = -1 \cdot (\ln x)^{-2} \cdot \frac{1}{x}$$
$$= -\frac{1}{x(\ln x)^2}$$

e) $y = e^x + 4^x$

 $y = e^{x} + e^{x \ln 4}$ $\frac{dy}{dx} = e^{x} + e^{x \ln 4} \cdot \ln 4$ $= e^{x} + 4^{x} \ln 4$

f) $y = \ln(x^4)$

$$\frac{dy}{dx} = \frac{1}{x^4} \cdot 4x^3$$
$$= \frac{4x^3}{x^4}$$
$$= \frac{4}{x}$$

g) $y = 4 \ln x$

$$\frac{dy}{dx} = 4 \cdot \frac{1}{x}$$
$$= \frac{4}{x}$$

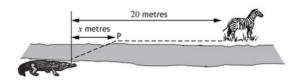
h) $y = x^x$

$$y = e^{x \ln x}$$
$$\frac{dy}{dx} = e^{x \ln x} \cdot \frac{d}{dx} (x \ln x)$$
$$\frac{dy}{dx} = e^{x \ln x} \cdot \left(\ln x + \frac{x}{x}\right)$$
$$\frac{dy}{dx} = x^x \cdot (\ln x + 1)$$
$$\frac{dy}{dx} = x^x (\ln x + 1)$$

2) A crocodile is stalking prey located 20 metres further upstream on the opposite bank of a river.

Crocodiles travel at different speeds on land and in water.

The time taken for the crocodile to reach its prey can be minimised if it swims to a particular point, P, x metres upstream on the other side of the river as shown in the diagram.



The time taken, T, measured in tenths of a second is given by

$$T(x) = 5\sqrt{36 + x^2} + 4(20 - x)$$

Calculate:

a) the time taken if the crocodile does not travel on land.

If the crocodile does not travel on land, then
$$x = 20$$
.
 $T(20) = 5\sqrt{36 + 20^2} + 4(20 - 20)$
 $= 5\sqrt{36 + 400} + 0$
 $= 5\sqrt{436}$
 $= 20\sqrt{109}$

b) the time taken if the crocodile swims the shortest distance possible.

If the crocodile swims the shortest distance possible, then x = 0. $T(0) = 5\sqrt{36 + 0^2} + 4(20 - 0)$ $= 5\sqrt{36} + 80$ = 30 + 80 = 110

c) the value of x such that the time T is minimised and hence the minimum possible time.

$$T(x) = 5\sqrt{36 + x^2} + 4(20 - x)$$

= $5(36 + x^2)^{\frac{1}{2}} + 80 - 4x$
 $T'(x) = 5 \cdot \frac{1}{2}(36 + x^2)^{\frac{-1}{2}} \cdot 2x - 4$
= $\frac{5x}{\sqrt{36 + x^2}} - 4$

The minimum will occur when T'(x) = 0:

$$T'(x) = 0$$

$$\frac{5x}{\sqrt{36 + x^2}} - 4 = 0$$

$$\frac{5x}{\sqrt{36 + x^2}} = 4$$

$$5x = 4\sqrt{36 + x^2}$$

$$25x^2 = 16(36 + x^2)$$

$$25x^2 = 576 + 16x^2$$

$$9x^2 = 576$$

$$x^2 = \frac{576}{9}$$

$$x = \frac{24}{3}$$

$$x = 8$$

Therefore the minimum possible time is T(8):

$$T(2\sqrt{8}) = 5\sqrt{36 + 8^2} + 4(20 - 8)$$

= $5\sqrt{36 + 64} + 4 \cdot 12$
= $5\sqrt{100} + 48$
= $5 \cdot 10 + 48$
= $50 + 48$
= 98