MATH6103 Differential & Integral Calculus MATH6500 Elementary Mathematics for Engineers

Problem Sheet 2

Deadline: Monday 19 October, 5:00.

Hand in to **drop box 5** in the undergraduate common room (maths department, room 502).

Hand in the questions marked with an asterisk (*).

One mark will be deducted if you do not staple your work.

1) Show that:

- * a) $\sin(\theta \phi) = \sin\theta\cos\phi \cos\theta\sin\phi$
 - b) $\cos(\theta \phi) = \cos\theta\cos\phi + \sin\theta\sin\phi$
- 2) Find the value of $\tan \theta$ when:
 - a) $\cot \theta = \frac{1}{2}$
 - b) $\theta = \pi^{c}$

* c) $\sec \theta = 100$ and $\tan \theta$ is negative

- d) $\sin \theta = 0$
- e) $\sin \theta = \frac{1}{2}$ and $\cos \theta$ is positive

* f) $\sin \theta = -\frac{1}{\sqrt{5}}$ and $\cos \theta$ is negative

3) Using

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h},$$

find f'(x) when:

- a) f(x) = x
- b) f(x) = x + 2
- * c) $f(x) = x^2$
- d) $f(x) = 3x^2$

* e)
$$f(x) = \frac{1}{x+2}$$

f) Challenge: $f(x) = \sin x$ [Hint: When h is small $\sin h \approx h$ and $\cos h \approx 1$.]