MATH6103 Differential & Integral Calculus MATH6500 Elementary Mathematics for Engineers

Problem Sheet 1 Solutions

1) Solve the following equations:

a)
$$4x + 16 = 0$$

4x + 16 = 04x = -16x = -4

b)
$$x^2 + 5x - 24 = 0$$

 $x^{2} + 5x - 24 = 0$ (x - 3)(x + 8) = 0x = -8 or 3

c)
$$x^2 - 5x - 24 = 0$$

$$x^{2} - 5x - 24 = 0$$

 $(x + 3)(x - 8) = 0$
 $x = -3 \text{ or } 8$

d) $x^2 + 5x = -6$

$$x^{2} + 5x = -6$$
$$x^{2} + 5x + 6 = 0$$
$$(x + 2)(x + 3) = 0$$
$$x = -3 \text{ or } -2$$

e) $x^2 + 5x = 0$

$$x^{2} + 5x = 0$$
$$x(x+5) = 0$$
$$x = -5 \text{ or } 0$$

f) $3x^2 + 8x + 1 = 0$

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

= $\frac{-8 \pm \sqrt{8^2 - 4 \cdot 3 \cdot 1}}{2 \cdot 3}$
= $\frac{-8 \pm \sqrt{64 - 12}}{6}$
= $\frac{-8 \pm \sqrt{52}}{6}$
= $\frac{-8 \pm 2\sqrt{13}}{6}$
= $\frac{-4 \pm \sqrt{13}}{3}$
= $\frac{-4 \pm \sqrt{13}}{3}$ or $\frac{-4 \pm \sqrt{13}}{3}$

- 2) Solve the following equations:
 - a) $x^{3} + 4x^{2} + x 6 = 0$ (Clue: x = 1 is one solution)

 $x^{3} + 4x^{2} + x - 6 = 0$ (x - 1)(x² + 5x + 6) = 0 by long division (x - 1)(x + 2)(x + 3) = 0 x = -3 or -2 or 1

b) $x^3 - 5x^2 + 60x - 224 = 0$ (Clue: x = 4 is one solution)

 $x^{3} - 5x^{2} + 60x - 224 = 0$ (x - 4)(x² - x + 56) = 0 by long division (x - 1)(x - 7)(x - 8) = 0 x = 1 or 7 or 8

c) $x^3 - 2x^2 - 4x = 0$

$$x^{3} - 2x^{2} - 4x = 0$$

$$x(x^{2} - 2x - 4) = 0$$

$$x = 0 \text{ or } x^{2} - 2x - 4 = 0$$

To solve $x^2 - 2x - 4 = 0$, use the formula:

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$
$$x = \frac{2 \pm \sqrt{2^2 - 4 \cdot 1 \cdot -4}}{2 \cdot 1}$$
$$x = \frac{2 \pm \sqrt{20}}{2}$$
$$x = \frac{2 \pm 2\sqrt{5}}{2}$$
$$x = 1 \pm \sqrt{5}$$
$$x = 0 \text{ or } 1 + \sqrt{5} \text{ or } 1 - \sqrt{5}$$

So overall:

3) Which of the following are functions? If they are functions, find their range. If not, explain why not.

a) a(x) = x + 2 with domain \mathbb{R}

It is a function with range \mathbb{R} .

b) $b(x) = \sqrt{x}$ with domain \mathbb{N} .

It is a function with range $\{x \in \mathbb{R} : x^2 \in \mathbb{N}\}$ (a subset of \mathbb{R}).

c) $c(x) = x^2 + 3$ with domain \mathbb{R} .

It is a function with range $\{x \in \mathbb{R} : x \ge 3\}$

d) $d(x) = \sqrt{x}$ with domain \mathbb{R} .

It is not a function as you cannot square root negative numbers. **OR** It is a function with range $\mathbb{R}^+ \cup \{ai : a \in \mathbb{R}\}$