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spaces for any cell shape. The approach is based on the composition of permutations and transformations by

cell sub-entity. Current approaches to generating degree-of-freedom maps for arbitrary order problems typi-

cally rely on a consistent orientation of cell entities that permits the definition of a common local coordinate

system on shared edges and faces. However, while orientation of a mesh is straightforward for simplex cells

and is a local operation, it is not a strictly local operation for quadrilateral cells and, in the case of hexahedral

cells, not all meshes are orientable. The permutation and transformation approach is developed for a range

of element types, including arbitrary degree Lagrange, serendipity, and divergence- and curl-conforming ele-

ments, and for a range of cell shapes. The approach is local and can be applied to cells of any shape, including

general polytopes and meshes with mixed cell types. A number of examples are presented and the developed

approach has been implemented in open-source libraries.
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1 INTRODUCTION

The construction of conforming finite element spaces requires neighbouring cells to agree on the
layout of shared degrees-of-freedom (DOFs), and—in the case of vector-valued elements—these
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Fig. 1. (a) In the example on the left, the local orderings of the DOFs on the shared facet agree. On the right,

the orderings do not agree. Here, a gap between the two cells has been added to help illustrate the orderings

on each side. (b) The orientations of two DOFs on the faces of a higher-degree Nédélec first kind element

on a tetrahedron from the point of view of two neighbouring cells. The directions on one face are rotated

relative to the directions on the other face.

cells need to agree on the orientation of shared edges and faces. These requirements can be handled
straightforwardly for low-order spaces with DOFs associated with vertices or a single DOF on each
edge or face, but are non-trivial for higher-order finite element spaces. The finite element method
permits arbitrary order approximations, but to exploit this feature it must be possible to construct
appropriate degree-of-freedom maps and to agree to the necessary vector orientations that provide
the required continuity.

To illustrate the orientation issue, Figure 1(a) shows shared DOFs on an edge as viewed from
neighbouring cells. If the cells do not agree on the orientation of the edge, the DOFs may be
mismatched and the finite element space will not be conforming. For discontinuous spaces, similar
issues arise with the location of quadrature points on a cell edge or face. Vector-valued spaces bring
additional complexity as the DOFs have an associated direction that needs to be agreed upon by
cells sharing the DOF. In some cases, it suffices to store a common sign. In other cases, agreement
between cells may require linear combinations. To illustrate, two of the DOFs on a face of a higher-
degree Nédélec first kind element [23] on two differently ordered neighbouring cells are shown
in Figure 1(b). It can be seen that the directions from the point of view of one cell are a linear
combination of the directions from the point of view of the other cell.

It is helpful to have an approach to the consistent ordering and orientation of DOFs on mesh
entities for triangular, quadrilateral, tetrahedral, and hexahedral cells, mixed cell meshes, and for
arbitrary polytopes. The latter case would support less common methods, such as the virtual ele-
ment method [12] which considers arbitrary polygonal and polyhedral cells. Before presenting an
approach for general polytope cells, we consider the approaches used in some widely used finite
element libraries.

1.1 Current Approaches

Traditional finite element libraries tie the degree of the approximation space to the degree of the
input mesh, with ‘nodes’ for point evaluation DOFs explicitly provided (and numbered) in the input
mesh. This provides a unique global index for DOFs and makes a DOF map trivial to construct for
specific element types. However, the approach allows only a limited set of finite element spaces
to be constructed, usually low-degree Lagrange elements, and requires a new mesh to change the
degree of the finite element space.

Modern finite element libraries usually decouple the input mesh from the family and degree
of the finite element space that is defined on the mesh. The mesh defines the cell geometry, and
different finite element spaces can then be defined on a given mesh. To construct DOF maps and
to agree on the orientation of any vectors, it is common to require that the cells in a mesh are
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Fig. 2. An example mesh with three cells. The lists underneath each mesh show the global numbers of the

vertices of each cell, and the coloured numbers show the local ordering of the vertices inside each cell. The

mesh on the left has been defined so that the vertices of each cell are locally ordered in anticlockwise order,

but the mesh is not ordered, so the local low-to-high edge orientation does not match the global low-to-

high orientation. The mesh on the right is the result of ordering the vertices of each cell of the mesh on the

left in ascending order: the local order of vertices inside each cell now agrees with the global numbering of

the vertices, and so the local low-to-high edge orientation matches the global low-to-high orientation. The

vertices, however, are no longer locally ordered in an anticlockwise order. If the mesh of triangles is embedded

in a 3D space—for example if it is a mesh representing the surface of an object—this leads to an ambiguity

when deciding on the normal vector to each face. In the mesh on the left, these normals all naturally point

out of the page. For the ordered mesh on the right, the face normals for the leftmost cell will point out of

the page, but for the other two cells, it points into the page. For some applications the cell orientation still

needs to stored despite the cell being reordered.

locally numbered in a way that guarantees that entities are consistently ordered. For meshes with
simplex cells, it is straightforward to reorder the local vertex indices of cells to ensure that the local
orientations of the mesh entities on the reference element agree with their globally agreed upon
orientations; the global orientation can be inferred from the global vertex indices. The reordering
can be performed locally by cell without reference to neighbouring cells. An example triangular
mesh is shown on the left in Figure 2. The mesh obtained by sorting the vertices in each cell in
ascending order is shown on the right in Figure 2. In this reordered mesh, the local and global
directions of each edge agree.

The re-ordering approach is implemented for simplex cells in a number of software libraries,
including MFEM [6], FEniCS [3, 21, 22, 27], and Firedrake [25]. Once this re-ordering is done, it
is guaranteed that the orientations of mesh entities are consistent between cells, allowing a DOF
map to be created based on global indices assigned to each mesh entity, and the directions of
any vectors will be consistent between cells. NGSolve [29]—a finite element solver based around
the NetGen mesh generator [28]—avoids having to re-order the cells by generating meshes in a
way that ensures that orientations are consistent. Higher-degree elements are only supported on
meshes imported from an external source when they have a consistent ordering.

The re-ordering approach is a straightforward, local operation for simplex cells and all meshes
of simplex cells can be ordered. For quadrilateral and hexahedral cells, the re-ordering approach
is more complicated. Figure 3 shows the three distinct reference cells that would be needed for
a naïvely low-to-high ordered mesh of quadrilateral cells. For a mesh of hexahedral cells, 501
distinct reference elements would be needed [33]. deal.II [7] implements a serial re-ordering
strategy for quadrilateral and hexahedral cells to generate consistent edge orderings [1]. After
reordering for quadrilateral cells, each cell is represented by the first reference shown in Figure 3.
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Fig. 3. These three quadrilateral reference elements are distinct. All other local orderings due to the low-to-

high convention can be obtained by rotating and reflecting these three reference cells.

While re-ordering leads to consistent edge orientations for all quadrilateral cell meshes of an
orientable manifold (for example, not a Möbius strip), the operation is not local to each cell. For
the case of hexahedra, not all meshes can be re-ordered to give a consistent edge direction. If a
consistent edge ordering for a mesh of hexahedra cannot be computed, deal.II will instead store
orientation flags for each sub-entity of the cell so that these can be used during assembly [1].
A distributed memory parallel version of the algorithm in deal.II for quadrilaterals is presented
in Homolya and Ham [17], and is used in the Firedrake library.

While the re-ordering approach allows high-degree finite element spaces to be constructed
with ease for a range of problems, it is not without drawbacks. As already mentioned, not all
meshes of hexahedral cells can be re-ordered. In other cases, explicit orientation markers are
still required: for example, if using a two-dimensional mesh embedded in a three-dimensional
space, or when solving a domain decomposition problem by coupling the finite element method
with the boundary element method [13, 18], the normals to a two-dimensional mesh are required.
These normals are reversed in reflected cells, and so whether or not the cells are reflected must be
stored.

When using the p-version or hp-version of the finite element method [2, 31, 34] it is common
to construct hierarchical basis functions ‘on-the-fly’ rather than a priori via the Ciarlet definition
of a finite element. Basis functions in the p-version are typically associated with cell entities, with
‘blending functions’ used to ensure that functions associated with a cell entity have the required
trace on other cell entities. As shown in [16] for H 1 spaces, continuity for higher-degree spaces
can be easily guaranteed with this approach by permuting the local coordinates on a cell entity
such that all cells sharing the entity agree on the coordinate system, with basis functions then
computed for each cell. This approach was extended to some H (div) and H (curl) elements in [15].
An advantage of the approach is simplicity. Drawbacks are that basis functions cannot be tabulated
a priori on a reference cell and must be computed per cell at runtime, and it is not always clear
how more unusual basis functions should be constructed. The former point limits the application
of code generation techniques for offline basis function evaluation.

1.2 Proposed Approach

We present an approach for ensuring compatible spaces of arbitrary degree without creating mul-
tiple reference elements, mesh re-ordering or runtime evaluation of the basis, and which can be
applied to meshes with mixed polytope cells. We consider Ciarlet-type elements and, instead of
re-ordering each cell, we transform the DOFs on each cell sub-entity to ensure that the required
continuity of finite element fields between cells is maintained. Given unique global indices for each
mesh entity, the approach is entirely local to each cell. Care is required when considering integrals
over facets and vector-valued basis functions, as in each of these cases the orientation of the facet
is important and is no longer guaranteed to agree on each side of the facet.
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In contrast to the approaches discussed in Section 1.1, the approach we propose can be applied to
an arbitrary element on an arbitrary cell type without requiring any specialised implementation
for a specific element or cell. While some parts of our approach—in particular, the permutation
of the order of scalar point evaluation DOFs—are already implemented in other libraries, it does
not appear that the full approach for handling H (div) and H (curl) elements is currently used
elsewhere. By representing the transformations as the product of one (for edges) or two (for faces)
base transformations per sub-entity, we vastly reduce the number of transformation matrices that
need to be stored.

The approach developed in this article is implemented in the open-source FEniCSx libraries
DOLFINx and Basix. The presented functionality can be accessed directly from the Basix element
library via C++ and Python interfaces; its application in practice can be inspected in the finite
element library DOLFINx. The libraries are available at https://github.com/FEniCS.

1.3 Outline

The remainder of this article is arranged as follows. In Section 2, we look at the definition of a
finite element space and the different types of DOF that we consider. In Section 3, we describe the
method for transforming the basis functions for each of these DOF types to achieve a consistent
ordering. We then present some examples of how this method can be used in Section 4. In Section 5,
we examine the method’s implementation in FEniCSx. We finish with some concluding remarks
in Section 6.

2 DEGREES-OF-FREEDOM

Before we look at transforming basis functions and constructing DOF maps, we define the finite
element spaces and DOFs that we will consider. In general, finite elements can be defined by the
following [14, 20].

Definition 2.1 (Ciarlet Finite Element). A finite element is defined by the triplet (R,V,L), where

• R ⊂ Rd is the reference element, usually a polygon or polyhedron;
• V is a finite dimensional polynomial space on R of dimension n;
• L := {l0, . . . , ln−1} is a basis of the dual spaceV∗ :=

{
f : V → R, �� , f is linear

}
.

The basis functions {ϕ0, . . . ,ϕn−1} of the spaceV are defined by

li (ϕ j ) =
⎧⎪⎨⎪⎩

1 i = j,

0 i � j .
(1)

Additionally, a map is defined that maps the basis functions on the reference element to func-
tions on an arbitrary cell [8, 19, 27]. The mapping for an element is chosen so that it preserves
important properties of the element’s basis functions.

The functionals li ∈ L are the (local) DOFs of the finite element (note that we enumerate
functionals and basis functions from 0). When a finite element is mapped to a mesh, a global
DOF number is assigned to each local DOF on each cell. To ensure that the mapped space has
the desired continuity properties, each functional li ∈ L is associated with a sub-entity of the
reference element. On neighbouring cells, local DOFs that are associated with a shared sub-entity
are assigned the same global DOF. For example, Figure 4 shows a basis function in a degree 1
Lagrange space that is associated with vertex 0 and a basis function of a degree 1 Lagrange space
on a mesh: the local DOFs on each triangle that are associated with the central vertex have each
been assigned the same global DOF, causing the function to be continuous.
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Fig. 4. Left: A basis function on the reference of a degree 1 Lagrange space on a triangle that is associated

with vertex 0. Right: A basis function of a degree 1 Lagrange space on a triangular mesh. Each local DOF

associated with the central vertex is associated with the same global DOF to ensure continuity.

Table 1. The Entities of Cells with Topological Dimensions 0 to 3

Topological
dimension

Entities by dimension Entities by codimension
0 1 2 3 0 1 (facets) 2 (ridges) 3 (peaks)

0 (a vertex) the cell – – – the cell – – –
1 (an interval) vertices the cell – – the cell vertices – –
2 (a polygon) vertices edges the cell – the cell edges vertices –
3 (a polyhedron) vertices edges faces the cell the cell faces edges vertices

For clarity, we define the terms we will use to describe meshes and cells that we will use
throughout. By entities, we refer to any of the vertices, edges, faces, or volumes of a cell: these
have dimensions 0, 1, 2, and 3, respectively. The topological dimension is the dimension of the cell
itself. The geometric dimension is the dimension of the space in which the mesh is embedded. For
example, a mesh of a subset of R2 with triangular cells has topological dimension 2 and geometric
dimension 2; a mesh of a 2-dimensional manifold in R3 with triangular cells has topological
dimension 2 and geometric dimension 3. The codimension of an entity is given by subtracting the
dimension of the entity from the topological dimension of the cell. Entities of codimensions 1, 2,
and 3 are called facets, ridges, and peaks, respectively. The usual names given to entities of cells of
topological dimensions 0 to 3 are shown in Table 1.

We now proceed to examine the different functional types that are commonly used to define
DOFs. The example elements in the following sections are based on the definitions in the Periodic
Table of the Finite Elements [11] and DefElement [32].

2.1 Point Evaluations

The first—and simplest—functional type is a point evaluation, given by evaluating the function at
a fixed point on the reference element. In other words, these DOFs are defined, for v ∈ V , by

li (v ) := v (pi ), (2)

for somepi ∈ R. For example, a degree 1 (linear) Lagrange finite element on a triangle is defined by
taking R to be the triangle with vertices at (0, 0), (1, 0), and (0, 1),V := span{1,x ,y}, and placing
a point evaluation DOF at each of the corners of the triangle. An example basis function of this
space was shown in Figure 4; note that the basis function is equal to 1 at one vertex and 0 at the
other vertices, and so Equation (1) is satisfied.

2.2 Point Evaluations of Face Tangents

For vector-valued function spaces, point evaluations must additionally include a direction in which
the evaluation is taken. Vector point evaluations in directions tangential to a face of a three-
dimensional cell require extra attention. There are two independent vectors tangent to a face, so
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Fig. 5. A possible arrangement of vector point evaluation DOFs in directions tangential to the face.

Fig. 6. The four basis functions of a Raviart–Thomas degree 1 space on a quadrilateral. The four DOFs are

the integral moments over each edge with the normal to that edge. The normals here have been chosen to

be 90° anticlockwise rotations of the low-to-high edge directions shown in the leftmost reference element in

Figure 3.

it is common to collocate two DOFs at each point. Figure 5 shows how eight face tangent DOFs
could be arranged on a quadrilateral face. If two cells meet at a face that has face tangent DOFs,
care must be taken to ensure that the directions assigned to the DOFs by each cell agree.

2.3 Integral Moments

Numerous finite elements are defined using integral moment DOFs. For scalar-valued function
spaces, these are defined, for v ∈ V , by

li (v ) :=

∫
Ξ
vϕ, (3)

where Ξ ⊆ R is some subset of the reference element, usually the whole cell or one of its faces or
edges, and ϕ : Ξ → R is a weight function. For vector-valued function spaces, integral moment
DOFs are defined, forv ∈ V , by

li (v ) :=

∫
Ξ
v · ϕ . (4)

In this case, ϕ : Ξ→ Rd is a vector-valued weight function.
For example, a degree 1 Raviart–Thomas element [26] on a quadrilateral is defined by taking R

to be the quadrilateral with vertices at (0, 0), (1, 0), (0, 1), and (1, 1),

V := span

{(
1
0

)
,

(
x
0

)
,

(
0
1

)
,

(
0
y

)}
,

and defining four DOFs by

li (v ) :=

∫
ei

v · n̂i ds, (5)

where ei is the i-th edge of the quadrilateral, and n̂i is the unit vector normal to ei . The basis
functions of this space are shown in Figure 6.
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As a second example, a degree 2 Nédélec first kind edge element [23] on a tetrahedron is defined
by taking R to be the tetrahedron with vertices at (0, 0, 0), (1, 0, 0), (0, 1, 0), and (0, 0, 1), and

V := span

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
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.

Twenty DOFs are used to define this space. The first twelve DOFs are defined by placing two
integral moments on each edge; these are given by

l2i+j (v ) :=

∫
ei

v · (tipi, j ) ds,

where ei is the i-th edge of the tetrahedron, pi, j is the j-th basis function of a degree 1 Lagrange

finite element space on ei , and t̂i is the unit vector tangential to ei . We define the remaining eight
DOFs as integral moments on the faces of the tetrahedron; these are given by

l6+2j+i (v ) :=

∫
fj

v ·ψj,i ds,

where fj is the i-th face of the tetrahedron, andψj,0 andψj,1 are vectors pointing in the directions
of two of the edges of face fj .

3 PERMUTING AND TRANSFORMING CELL BASIS FUNCTIONS

Now that we have examined functionals that can be used to define DOFs, we look at how the ref-
erence basis functions can be adjusted on each cell to ensure that the required continuity between
cells is maintained. The key idea in this section is to consider basis functions by the mesh entity
with which the corresponding DOF is associated and then treat these sets independently.

Let {ϕ0, . . . ,ϕn−1} be a set of basis functions, as ordered on the reference cell. Our general ap-
proach is to define a matrix M ∈ Rn×n for each cell such that the transformed basis functions for

that cell {ϕ̃0, . . . , ϕ̃n−1} are given by

�����
	

ϕ̃0

...

ϕ̃n−1


����
�
= M

�����
	

ϕ0

...

ϕn−1


����
�
. (6)

The transformation M is computed by comparing the orientation of the entities of each cell to
the orientation of the reference element. The chosen orientation of the reference element, and the
numbering of each entity, is arbitrary. In all examples presented, we follow the ordering convention
used by Basix [30]: for simplices, this follows the UFC ordering convention that orders sub-entities
by the numbers of the vertices that are non-incident to the sub-entity [4]. For other cells, the sub-
entities are ordered using the numbers of the vertices that are incident to the sub-entity.

The method proposed here associates a set of transformations to each finite element that rep-
resent how the element’s DOFs are arranged and how they are affected by reflecting or rotating
a sub-entity of the reference element. Although these transformations are the same for some ele-
ments, they vary greatly for other elements. For example, Nédélec second kind elements [24] have
integral moments with the basis functions of a Raviart–Thomas space on their facets, meaning that
the DOFs on these facets do not have the same arrangement as the DOFs of a Lagrange element
(as shown in the top row of Figure 7). For more exotic elements, the DOF arrangements can be
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even more unusual: for example, serendipity spaces [9] and the divergence- and curl-conforming
spaces based on them [10] are defined for hexahedral cells, but the DOFs on their faces are integral
moments against spaces defined on triangles. Therefore, the transformations must be associated
with the element and not the cell type. The operator M is then constructed as a composition of
operations for each element cell entity.

We first consider how spaces of scalar-valued functions are transformed before moving on
to spaces of vector-valued functions. We consider two types of vector-valued function space:
divergence-conforming spaces and curl-conforming spaces. These are distinguished by the type
of continuity required between cells: a space is divergence-conforming if the components normal
to the facets of the cell are continuous; a space is curl-conforming if the components tangent to
the facets of the cell are continuous.

3.1 Scalar Spaces

For spaces of scalar functions, we must ensure that the DOFs on a mesh entity appear in the same
order when viewed from cells adjacent to the entity, as shown in Figure 1(a). Vertices are trivially
handled as they have no orientation. For two-dimensional cells, the shared entities of interest
are edges; for three-dimensional cells, the shared entities of interest are edges and faces. When
permuting a cell, the direction of each of its edges may be reversed; hence, the order of the DOFs
on each edge may need to be reversed. Faces of a cell can be rotated and reflected when permuting
a cell, so their DOFs may need to be rotated or reflected.

DOFs are associated with a single mesh entity only, so permuting one entity will have no effect
on the DOFs of other entities. Therefore, each entity can be considered independently of other
entities. We therefore split the transformation of the DOFs on a cell into base transformations. For
each edge of a two- or three-dimensional reference cell, we store one base transformation that
describes the effect of reversing that edge. For each face of a three-dimensional reference cell,
we store two base transformations: one that describes the effect of rotating the face and one that
describes the effect of reflecting the face. The rotations and reflection of a face of a tetrahedron and
hexahedron that are represented by base transformations are shown in Figure 7. For each cell in the
mesh, it can then be calculated how many times each base transformation needs to be applied to
the cell by comparing the order of the global vertex numbers on each entity to the ordering of the
reference element. We use a low-to-high orientation of the entities to do this, but other conventions
could be used. The transformation M for the cell can then be calculated by multiplying each base
transformation the necessary number of times. Matrices representing rotations and reflections of
the same face of a cell do not commute, so it must be decided beforehand in which order these
transformations will appear in the product of base transformations.

For many scalar-valued spaces, the base transformations will be permutation matrices as permut-
ing a mesh entity leads to swapping the positions of the DOFs. This is not true in all cases, however:
for higher-degree serendipity spaces on a hexahedron, for example, the base transformations for
DOFs on the faces will be linear transformations and not permutations. The implementation of
higher-degree serendipity spaces will be discussed in Section 5.1.

3.2 Divergence-Conforming Spaces

For vector-valued functions, the direction of the vector used to define the DOF must be taken into
account alongside the ordering of DOFs on an entity. If two adjacent cells do not agree on the
direction of a DOF, the basis functions on one of the cells must be adjusted to correct for this.

For divergence-conforming spaces, neighbouring cells must agree on the direction of the normal
vector on facets. If two cells disagree on the direction of a DOF, then we can multiply the basis
functions associated with the facet on one of the cells by −1 to correct the disagreement. In order
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Fig. 7. The effect of rotating and reflecting a face of a tetrahedron (top) and hexahedron (bottom) on a

possible layout of DOFs on that face. The blue arrows have been included to indicate the orientation of the

triangle or quadrilateral following each transformation.

Fig. 8. The effect of rotating and reflecting a face of a tetrahedron on the direction of face tangents. A rotation

leads to l̃0 = −l1 and l̃1 = l0 − l1. A reflection leads to l̃0 = l1 and l̃1 = l0. The blue arrows have been included

to indicate the orientation of the triangle following each transformation.

to decide when to multiply values by −1, we need to know whether each entity of a cell has been
reflected. This information has already been calculated when determining how many times to
apply each base transformation to the cell, so can be reused here.

3.3 Curl-Conforming Spaces

For curl-conforming spaces, the tangential component of the vector will be continuous between
cells. For two-dimensional cells, directions can be corrected in the same way as for divergence-
confirming spaces. For three-dimensional cells, however, the situation is more complicated. As we
saw in Section 2.2, there will commonly be two face tangent DOFs collocated at points on the face
of a three-dimensional cell, as the space of vectors tangent to the face has dimension 2. For a given
face of a tetrahedral or hexahedral cell, we take the directions for these DOFs to be parallel to two
of the edges of the face (other directions could be used and would lead to slight variants of the
base transformations we arrive at). The effect of rotating and reflecting the face on the direction
of the DOFs on triangular and quadrilateral faces are shown in Figures 8 and 9, respectively.

For face tangent DOFs on faces shared by two cells, linear transformations must be applied to
the basis functions to counteract the effect of rotating and reflecting a face. As for div-conforming
spaces, the data calculated when working out how many base transformations to apply to each
cell can be reused to determine which transformations need to be applied.

3.4 Composing the Base Transformations for Each Entity

The transformation matrix M for a given cell can be calculated by comparing the orientation
of each sub-entity to the reference orientation, then composing (multiplying) the required base
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Fig. 9. The effect of rotating and reflecting a face of a hexahedron on the direction of face tangents. A rotation

leads to l̃0 = −l1 and l̃1 = l0. A reflection leads to l̃0 = l1 and l̃1 = l0. The blue arrows have been included to

indicate the orientation of the quadrilateral following each transformation.

transformations. The transformation matrix can then be applied at cell level during the finite
element assembly process (while the transformation can be expressed as a matrix multiplication,
in practice it is typically applied without forming M).

In cases in which the base transformations are permutation matrices, the permutations can be
applied in the construction of the DOF map, avoiding the application of transformations during
assembly. For such scalar-valued spaces, the permutations we apply are the same as those proposed
in [16], although we apply these permutations to the DOF numbering of each cell rather than
applying them during the creation of the reference basis functions.

For sub-entities that are edges, we compare the orientation of the edge to the reference orienta-
tion inferred from the global vertex numbers of the edge’s endpoints. If these orientations disagree,
then we apply the base transformation for that edge. Note that, in some cases, two cells adjacent
to an edge may agree on the orientation of the edge, but both disagree with the reference orienta-
tion. In this case, both cells will apply their base permutation, as each cell will compare the edge’s
orientation with the reference only and not with the other cell.

For sub-entities that are faces, we use two base transformations: one of these represents moving
the vertices one position clockwise (i.e., a 120° rotation for a equilateral triangle or a 90° rotation
for a square); the other represents a reflection of the face. The cell must decide how many times
this rotation needs to be applied to the face and whether to apply the rotation. This can be done
by first identifying which of the face’s vertices has the lowest global number. The number of ro-
tations to apply is calculated by looking at how much the face needs to be rotated to move this
vertex to the position of the locally lowest-numbered vertex. We then look at the two vertices next
to the one that we have just identified. If the lower-numbered vertex is not in the same direction
as the corresponding direction for the local vertex numbering, we apply a reflection to this face.
Once the lowest globally numbered vertex and its lowest-numbered neighbour have been iden-
tified, we are able to fully orient the face in a consistent way to neighbouring cells. The global
numbers of the other vertices are irrelevant and any permutation of the order of these can be
ignored.

3.5 Discontinuous Spaces and Facet Integrals

When using, for example, discontinuous Galerkin schemes, integrals over shared facets are
computed. It is common for these integrals to involve jump and average operations. This requires
the evaluation of basis functions from both neighbouring cells at a series of quadrature points on
the facet. In order for integrals to be calculated correctly, the two cells sharing a facet must agree
on the orientation of the facet so that both cells agree on the location of the quadrature points.
In an unordered mesh, these orientations may not agree. The quadrature points must be rotated
and reflected to correct for this. Again, the data calculated when working out how many times
to apply the base transformations can be reused here. The transformation of quadrature points
cannot be amalgamated into the base transformation matrices, so must be considered separately.
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Fig. 10. Left: The numbering and orientation of the entities of the reference triangle. Right: The DOF

arrangement for a degree 3 Lagrange space. Each DOF is a point evaluation.

Table 2. The Permutations that the Base Transformations Represent

for a Degree 3 Lagrange Space on a Triangular Cell

0 1 2 4 3 5 6 7 8 9 edge 0 reversed (B0)

0 1 2 3 4 6 5 7 8 9 edge 1 reversed (B1)

0 1 2 3 4 5 6 8 7 9 edge 2 reversed (B2)

The DOFs that are on the entity permuted in each row are highlighted.

The transformation of quadrature points for facet (and ridge) integrals is essentially the same as
the transformation of DOFs in a space containing point evaluations, with the quadrature points
taking the place of the DOF points.

4 EXAMPLES

In this section, we discuss how our method can be applied to four different elements: a degree 3
Lagrange element on a triangle, a degree 2 Raviart–Thomas element on a quadrilateral, a degree 4
Lagrange space on a hexahedron, and a degree 2 Nédélec first kind element on a tetrahedron.

4.1 Computing the Base Transformations for a Cell

4.1.1 Example 1: Lagrange on a Triangle. The reference element and DOF layout for a degree 3
continuous Lagrange space are shown in Figure 10. The base transformations for this element will
describe how the order of the DOFs is affected by reversing an edge. From Figure 10, we can see
that reversing edge 0 will lead to the positions of DOFs 3 and 4 being swapped; reversing edge 1
will lead to the positions of DOFs 5 and 6 being swapped; and reversing edge 2 will lead to the
positions of DOFs 7 and 8 being swapped. These base transformations can be represented by the
following matrices:

B0 :=

�����
	

I3

0 1
1 0

I5


����
�
, B1 :=

�����
	

I5

0 1
1 0

I3


����
�
, B2 :=

�����
	

I7

0 1
1 0

1


����
�
, (7)

where In is an n by n identity matrix and the omitted blocks of each matrix are 0. For this element,
the base transformation matrices are permutations. Therefore, the permutations shown in Table 2
could be applied directly when creating the DOF map.

4.1.2 Example 2: Raviart–Thomas on a Quadrilateral. The reference element and DOF layout
for a degree 2 Raviart–Thomas element are shown in Figure 11. In the same way as in the first
example, the base transformations for this element can be calculated by considering the effect that
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Fig. 11. Left: The numbering and orientation of the entities of the reference quadrilateral. Right: The DOF

arrangement for a degree 2 Raviart–Thomas space. DOFs 0 to 7 are integral moments with degree 1 Lagrange

basis functions on the edges. DOFs 8 to 11 are integral moments against degree 1 Nédélec basis functions

on the face.

reversing an edge would have on the DOFs on that edge. For this element, however, we must also
consider the effect of reversing each edge on the directions of the DOFs on that edge: when an
edge is reversed, these directions need to be reversed. For example, DOFs 0 and 1 are on edge 0, so
they must be reversed if this edge is reversed. Note that DOF 8 is associated with the interior of
the cell, so it is unaffected by the reversal of edge 0. The following base transformation matrices
describe the effect on this element of reversing each edge:

B0 :=
��
	

0 −1
−1 0

I10


�
�
, B1 :=

�����
	

I2

0 −1
−1 0

I8


����
�
,

B2 :=

�����
	

I4

0 −1
−1 0

I6


����
�
, B3 :=

�����
	

I6

0 −1
−1 0

I4


����
�
. (8)

In each matrix, the DOFs on an edge are swapped (as their positions are swapped) and multiplied
by −1 (as their directions are reversed).

4.1.3 Example 3: Lagrange on a Hexahedron. The reference element and DOF layout for a degree
4 Lagrange element are shown in Figure 12. As in the previous two examples, the order of the DOFs
on the edges of this element will be reversed if an edge is reversed. As the cell is three-dimensional
in this example, we must also include base transformations describing the effect of rotating and
reflecting a face of the cell. Face 1 includes the DOFs 53 to 61. Referring to Figure 7, we can see the
effect of rotating this face and construct the base transformations. As in the first example, each base
transformation for this element is a permutation. These permutations are shown in Table 3. We
note that the rotation shown in Figure 7 goes in the opposite direction to that shown in Figure 12.
This is because we count how many times a face has been rotated to get from a cell to the reference
cell, then use the base transformations to “undo” this rotation and map from the reference cell to
the physical cell.

4.1.4 Example 4: Nédélec First Kind on a Tetrahedron. The reference element and DOF layout
for a degree 2 Nédélec first kind element are shown in Figure 13. Once again, the effect of reversing
each entity can be ascertained by looking at the layout of DOFs on the reference element. As in
the second example, the directions of DOFs on an edge are reversed when that edge is reversed.
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Fig. 12. Left: The numbering and orientation of the entities of the reference hexahedron. Right: The DOF

arrangement for a degree 4 Lagrange space. Each DOF is a point evaluation.

Table 3. The Permutations Described by the Base Transformations for a Degree 4

Lagrange Space on a Hexahedral Cell

. . . 10 9 8 . . . edge 0 reversed (B0)

. . . 13 12 11 . . . edge 1 reversed (B1)

. . . 16 15 14 . . . edge 2 reversed (B2)

. . . 19 18 17 . . . edge 3 reversed (B3)

. . . 22 21 20 . . . edge 4 reversed (B4)

. . . 25 24 23 . . . edge 5 reversed (B5)

. . . 28 27 26 . . . edge 6 reversed (B6)

. . . 31 30 29 . . . edge 7 reversed (B7)

. . . 34 33 32 . . . edge 8 reversed (B8)

. . . 37 36 35 . . . edge 9 reversed (B9)

. . . 40 39 38 . . . edge 10 reversed (B10)

. . . 43 42 41 . . . edge 11 reversed (B11)

. . . 46 49 52 45 48 51 44 47 50 . . . face 0 rotated (B12)

. . . 44 47 50 45 48 51 46 49 52 . . . face 0 reflected (B13)

. . . 55 58 61 54 57 60 53 56 59 . . . face 1 rotated (B14)

. . . 53 56 59 54 57 60 55 58 61 . . . face 1 reflected (B15)

. . . 64 67 70 63 66 69 62 65 68 . . . face 2 rotated (B16)

. . . 62 65 68 63 66 69 64 67 70 . . . face 2 reflected (B17)

. . . 73 76 79 72 75 78 71 74 77 . . . face 3 rotated (B18)

. . . 71 74 77 72 75 78 73 76 79 . . . face 3 reflected (B19)

. . . 82 85 88 81 84 87 80 83 86 . . . face 4 rotated (B20)

. . . 80 83 86 81 84 87 82 85 88 . . . face 4 reflected (B21)

. . . 91 94 97 90 93 96 89 92 95 . . . face 5 rotated (B22)

. . . 89 92 95 90 93 96 91 94 97 . . . face 5 reflected (B23)

As the space has a high number of DOFs, only the DOFs on the entity are shown. The other

DOFs will be unaffected by the base transformation.

Therefore, the base transformations for each edge (B0 to B5) will be identity matrices with a 1
replaced with −1 for the DOFs on that edge. The DOFs on the faces of this element are not moved
by permuting the face—as the two DOFs on each face are collocated at the same point—but their
directions are affected. Referring back to Figure 8, we can calculate that the effect of rotating face
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Fig. 13. Left: The numbering and orientation of the entities of the reference tetrahedron. Right: The DOF

arrangement for a degree 2 Nédélec first kind curl-conforming space. DOFs 0 to 11 are integral moments

with degree 1 Lagrange basis functions on the edges. DOFs 12 to 19 are integral moments of the tangential

components on the faces.

0 is described by the transformation

B6 :=

�����
	

I12

0 −1
1 −1

I6


����
�
,

and the effect of reflecting face 0 is described by the transformation

B7 :=

�����
	

I12

0 1
1 0

I6


����
�
.

These two matrices are the base transformations for face 0. The effect of any transformation of
face 0 can be calculated by taking various products of these matrices. We can describe the effect
of rotating and reflecting the other faces in the same way to obtain B8 to B13.

4.2 Application of the Base Transformations

We now look at how the base transformations computed in the previous section can be applied.
Figure 14 shows an example mesh with four triangular cells on which we will compute the
transformed basis functions of a degree 3 Lagrange space. The reference orientations of the cell
sub-entities are shown in Figure 14(b): the edges marked with a star are those whose local orienta-
tion on that cell do not match the low-to-high orientations shown in Figure 14(a). These stars tell
us which base transformations we should apply to the reference basis functions for that cell.

In cell 0, all three edges are reversed, so we should apply all three base transformations to the
reference basis functions. Therefore, for cell 0, the transformation matrix is given by

M0 := B0B1B2 =

�������������������
	

I3

0 1

1 0

0 1

1 0

0 1

1 0

1


������������������
�

, (9)
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Fig. 14. (a) The mesh of triangles used in the first example, with low-to-high edge orientations. (b) The local

numbering and orientations of the entities of the four cells in the first and fourth examples. The edges labelled

with stars are those whose local orientation does not match their global orientation shown in Figure 14(a).

where B0 to B2 are the base transformations defined in (7). In cell 1, no edges are reversed, so M1

is the identity matrix and no change is made to the basis functions. In cell 2, edges 1 and 2 are
reversed, so M2 is given by

M2 := B1B2 =

���������
	

I5

0 1
1 0

0 1
1 0

1


��������
�

. (10)

In cell 4, only edge 0 is reversed, so M3 is equal to B0 (the base transformation for edge 0).
As noted earlier, all of the base transformations for this element are permutations. Therefore,

they can be applied directly when creating the DOF map. Figure 15(a) shows the global DOF num-
bers assigned to each cell following the application of these permutations. If the permutations are
not applied, the DOF numbers shown in Figure 15(b) would be assigned instead: note that, in this
case, the positions of the DOFs on the edges do not agree from the point of view of each cell, and
so the global basis functions would not be continuous.

For the degree 2 Raviart–Thomas space on a quadrilateral, the transformation matrix for each
cell can be computed in the same way by combining the base transformation defined in Equation (8)
except, in this case, the transformations are not permutations, so they cannot be applied directly
to the DOF map. For example, for the mesh and reference orientations shown in Figure 16, M0

would be the identity for cell 0. For cell 1, M1 := B0B2 (the product of the base permutations for
edges 0 and 2).

For three-dimensional cells, the situation is slightly more complex, as we have to apply base
transformations for the faces as well as the edges. For each face, we need to ascertain how many
times the face needs to be rotated and if it needs to be reflected to map from the reference
orientation. A two-cell mesh for a degree 4 Lagrange space on a hexahedron is shown in Figure 17.
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Fig. 15. (a) The DOF numbering on each cell in the mesh once the permutation has been applied to each cell.

(b) The DOF numbering on each cell if no permutation is performed.

Fig. 16. (a) The mesh of quadrilaterals used in the second example, with low-to-high edge orientations.

(b) The local numbering and orientations of the entities of the three cells in the second example. The edges

labelled with stars are those whose local orientation does not match their global orientation shown in

Figure 16(a).

Table 4. Do the Edges (Top) and Faces (Bottom) of Each Cell of the Mesh in Figure 17 Need Reflecting,

and How Many Times Do the Faces Need Rotating?

0 1 2 3 4 5 6 7 8 9 10 11

cell 0 false false false false false false false true false false true true

cell 1 false true true true false false false false false false true false

0 1 2 3 4 5

cell 0 true, 0 false, 0 false, 0 false, 0 false, 0 true, 2

cell 1 true, 2 true, 2 false, 1 true, 1 true, 0 true, 0

Table 4 summarises which base transformations should be applied to reference basis functions for
each cell of this mesh. While the transformations due to reflections can be applied only once (as
reflecting twice is the same as doing nothing), the transformations due to rotations can be applied
more than once. For example, the transformation due to rotating face 0 must be applied twice to
the reference basis functions for cell 0.
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Fig. 17. The mesh of hexahedra used in the third example, with low-to-high edge orientations. (b) The local

numbering and orientations of the entities of the three cells in the third example. The edges labelled with

stars are those whose local orientation does not match their global orientation shown in Figure 17(a).

4.3 Extension to Arbitrary Cells and Mixed Meshes

The proposed method considers sub-entities of each cell, and the same transformation is applied
to a sub-entity of a given type whatever the type of the cell. It is straightforward, therefore, to
extend this method to arbitrary polygons and polyhedra and meshes with a mixture of cell types.
Figure 18 shows three example cells in a mixed mesh. As in the previous examples, we could apply
the base transformations for the edges labelled with a star.

On a mesh of hexagonal prisms, for example, each cell would have 18 edges and 8 faces: 1 base
transformation would be needed for each edge and 2 base transformations would be needed for
each face. As in the previous examples, these base transformations can then be combined to find
the transformation for any cell.

5 IMPLEMENTATION

The DOF transformation method described in this article is implemented in the FEniCSx open-
source finite element libraries [3, 21]. In Basix—the FEniCSx library for element definitions, basis
function computation and interpolation—we compute the base transformations for each element
and provide these alongside the other information about the finite element defined on the reference
cell. FFCx—the FEniCSx form compiler—generates kernels (in C) from the Unified Form Language
(UFL) [5] to evaluate finite element forms on a cell. Evaluation is on a common reference cell
and the kernels are executed without any reference to cell orientations. DOLFINx is the main
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Fig. 18. Three cells in a mixed mesh. The edges and faces labelled with stars are those whose local orientation

does not match their global orientation.

user interface of FEniCSx and executes cell kernels on a mesh. The transformation of cell basis
functions, discussed in Sections 3.1 to 3.4, is managed by DOLFINx using Basix. After calling the
kernel for a cell, DOLFINx calls Basix to apply, in place, the required transformations to the kernel
output. DOLFINx passes the required cell orientation data to Basix. The data can be packed into
a single integer, with one bit per entity used to signify whether the entity is reflected and 2 bits
per face (for triangles and quadrilaterals; polygons with more edges require more bits) to signify
how many times the face has been rotated. The information for each entity can then be retrieved
using bit operations. For elements whose base transformations are simply permutations of the
DOFs (e.g., Lagrange elements), the effects of the permutations are incorporated into the DOF
map construction and no transformations are required during the assembly process.

The transformation matrices M for each cell are never explicitly computed. Instead, the neces-
sary composition of base transformations is directly applied to the evaluations of the reference
basis functions. As each base transformation affects only a small number of basis functions, we
can restrict our transformation to affect the evaluations of the relevant functions only rather than
repeatedly multiplying by n by n matrices.

5.1 Computing the Base Transformations in Basix

For Lagrange spaces, it is reasonably straightforward to implement functions that generate the
necessary permutations of the DOF numbering for an arbitrary degree element. For spaces defined
using integral moments, the effect of permuting a cell sub-entity is dependent on the space against
which the integral moments are taken. As an example, we consider a degree 5 serendipity element
on a hexahedron [9]. The functionals l0, . . . , l73 that define this space are defined by:

• l0 to l7 are point evaluations at the vertices of the hexahedron.
• l8 to l55 are integral moments against a degree 3 Lagrange space on the edges of the hexahe-

dron. There are 4 of these functionals for each edge.
• l56 to l73 are integral moments against a degree 1 dPc space on the faces of the hexahedron.

A dPc space on a quadrilateral contains the basis functions of a Lagrange space on a trian-
gle [11]. The basis functions of a degree 1 dPc space are

ψ0 (t , s ) = 1 − t − s,
ψ1 (t , s ) = t ,

ψ2 (t , s ) = s .

There are 3 of these functionals for each face.

ACM Transactions on Mathematical Software, Vol. 48, No. 2, Article 18. Publication date: May 2022.



18:20 M. W. Scroggs et al.

To illustrate how the base transformations can be computed, we consider the DOFs of this element
on the 0th face of the cell (l56 to l58). To compute the base transformation corresponding to a
rotation of this face, we consider the transformation T : (t , s ) �→ (s, 1 − t ). This represents a
clockwise rotation of the face and can be used to undo anticlockwise rotations. If we apply the
transformation T to the basis functions of the dPc space on the face, we obtain that

ψ0 (t , s ) �→ ψ̃0 (t , s ) = t − s,

ψ1 (t , s ) �→ ψ̃1 (t , s ) = s,

ψ2 (t , s ) �→ ψ̃2 (t , s ) = 1 − t .

These can be represented in terms ofψ0 toψ2 as

���
	

ψ̃0

ψ̃1

ψ̃2


��
�
=
��
	

0 1 −1
0 0 1
1 0 1


�
�
��
	

ψ0

ψ1

ψ2


�
�
. (11)

The matrix here contains the coefficients of an interpolation of the functions ψ̃0 to ψ̃2 into the

dPc space on the quadrilateral face. The same matrix can be use to write the functionals l̃56 to l̃58

(representing integral moments with the functions ψ̃0 to ψ̃2) in terms of l56 to l58:

���
	

l̃56

l̃57

l̃58


��
�
=
��
	

0 1 −1
0 0 1
1 0 1


�
�
��
	

l56

l57

l58


�
�
.

The basis functions ϕ56 to ϕ58 of the serendipity space, and the basis functions ϕ̃56 to ϕ̃58 corre-

sponding to the functionals l̃56 to l̃58 satisfy

���
	

l̃56

l̃57

l̃58


��
�

���
	

ϕ̃56

ϕ̃57

ϕ̃58


��
�

t

=
��
	

1 0 0
0 1 0
0 0 1


�
�
,

��
	

l56

l57

l58


�
�
��
	

ϕ56

ϕ57

ϕ58


�
�

t

=
��
	

1 0 0
0 1 0
0 0 1


�
�
.

The base transformation that we want to calculate is the matrix A such that

��
	

ϕ56

ϕ57

ϕ58


�
�
= A

���
	

ϕ̃56

ϕ̃57

ϕ̃58


��
�
.

Combining these, we see that

��
	

1 0 0
0 1 0
0 0 1


�
�
=
���
	

l̃56

l̃57

l̃58


��
�

���
	

ϕ̃56

ϕ̃57

ϕ̃58


��
�

t

=
��
	

0 1 −1
0 0 1
1 0 1


�
�
��
	

l56

l57

l58


�
�
��
	

ϕ56

ϕ57

ϕ58


�
�

t

A−t

=
��
	

0 1 −1
0 0 1
1 0 1


�
�
A−t .
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Therefore, the base transformation representing a rotation of the 0th face is given by

A = ��
	

0 1 −1
0 0 1
1 0 1


�
�

t

=
��
	

0 0 1
1 0 0
−1 1 1


�
�
.

In this way, we can compute the base transformations for DOFs defined by integral moments
by computing the interpolation matrix into the space we are taking integral moments against, as
shown in Equation (11). In Basix, the information needed to calculate these interpolation coeffi-
cients is created when an element is initialised; this information can be reused to compute the base
transformations.

The base transformations for the reflection of a face and for integral moments on other mesh
sub-entities can be obtained by following a similar method.

6 CONCLUSIONS

We have presented a method for constructing Ciarlet finite element spaces of arbitrary degree
for any cell type and for a range of degrees-of-freedom types and, hence, finite element types.
The method does not depend on re-ordering the mesh, which removes the major limitation of
other approaches. The method can be applied to meshes of triangles, tetrahedra, quadrilaterals,
and hexahedra. It also extends to general polygonal and polyhedral cells, and mixed meshes.

For some elements, this approach involves applying a permutation to the DOF numbering on
each cell. For other elements, the issues cannot be resolved using permutations, and linear trans-
formations must be applied to the local element tensor for each cell.

The construction of the entity permutation data needed by this method needs only knowledge of
the global numbering of the vertices in the mesh. This is an advantage over ordering the mesh, as
the input ordering is preserved, no parallel communication is required, and the method is valid for
all meshes of any cell type. The approach is particularly appealing in high-performance computing
applications, as it allows the use of high-degree elements on meshes of hexahedral cells.
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