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a b s t r a c t 

We consider the simulation of electromagnetic scattering by single and multiple isotropic homogeneous 

dielectric particles using boundary integral equations. Galerkin discretizations of the classical Poggio- 

Miller-Chang-Harrington-Wu-Tsai (PMCHWT) boundary integral equation formulation provide accurate 

solutions for complex particle geometries, but are well-known to lead to ill-conditioned linear systems. In 

this paper we carry out an experimental investigation into the performance of Calderón preconditioning 

techniques for single and multiple absorbing obstacles, which involve a squaring of the PMCHWT oper- 

ator to produce a well-conditioned second-kind formulation. For single-particle scattering configurations 

we find that Calderón preconditioning is actually often outperformed by simple “mass-matrix” precondi- 

tioning, i.e. working with the strong form of the discretized PMCHWT operator. In the case of scattering 

by multiple particles we find that a significant saving in computational cost can be obtained by perform- 

ing block-diagonal Calderón preconditioning in which only the self-interaction blocks are preconditioned. 

Using the boundary element software library Bempp ( www.bempp.com ) the numerical performance of 

the different methods is compared for a range of wavenumbers, particle geometries and complex refrac- 

tive indices relevant to the scattering of light by atmospheric ice crystals. 

© 2018 Elsevier Ltd. All rights reserved. 
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. Introduction 

Calculating the radiative effects of cirrus clouds is a central

roblem in climate modelling [1,2] . Cirrus clouds appear at high

ltitudes (usually greater than 6km [2] ), and their effect on climate

s significant, since at any given time they cover around 30% of the

arth’s surface at mid-latitudes, and 60–80% in the tropics, and are

ot confined to a particular latitude or season [3] . The ice crystals

n cirrus clouds vary considerably in size and shape, and are gener-

lly highly non-spherical, taking forms such as hexagonal columns,

exagonal plates and bullet rosettes [2] , and aggregates of these,

nd the accurate simulation of electromagnetic scattering by such

ce crystals is therefore a challenging problem [1,2] . 

A number of different approaches are available for the simula-

ion of electromagnetic dielectric scattering, each with their own

dvantages and disadvantages. For particles of small to moder-

te size (relative to the wavelength) there are “numerically ex-

ct” methods [4] such as the Discrete Dipole Approximation (DDA)
∗ Corresponding author. 
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5,6] , the Finite-Difference Time-Domain (FDTD) [7–9] and Pseudo-

pectral Time-Domain (PSTD) [10] methods, and the Extended

oundary Condition [11–13] and Invariant Imbedded [14,15] T-

atrix methods. For particles of large size (relative to the wave-

ength) one can use “approximate” high-frequency methods such

s Geometric Optics/ray tracing and the Kirchhoff approximation

see e.g. [16–27] ). Scattering by multiple particles is also a well-

tudied problem. For a general overview of the classical multi-

article scattering literature we refer the reader to [28] . We also

ention the T-matrix based methods in [29–31] and the fast

olvers presented recently in [32,33] . 

The use of boundary integral equations and their discretization

sing boundary element methods (BEMs) is well-established in

he electrical engineering community but has only recently started

etting serious attention in the atmospheric physics community

34–36] . BEM is a “numerically exact” method which can provide

ighly accurate simulations of scattering by complex ice crystal

hapes. It has no inherent restriction on the complexity of the

catterer, and is also well-suited to higher frequency problems,

ince it is based on a reformulation of the scattering problem

s a boundary integral equation on the scatterer’s surface, which

https://doi.org/10.1016/j.jqsrt.2018.11.035
http://www.ScienceDirect.com
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reduces the dimensionality of the domain to be discretized from

an unbounded 3D domain to a bounded 2D domain. Early ap-

plications of BEM to the simulation of light scattering by simple

ice crystals include [37] and [38] . More comprehensive studies of

complex crystal shapes (including hexagonal columns with con-

ventional and stepped cavities, bullet rosettes and Chebyshev ice

particles) have been given recently by Groth et al. [34] and Baran

and Groth [35] , using the open-source BEM software library Bempp

[39] , available at www.bempp.com . In [34,35] it was shown (by

comparison with a T-matrix method) that, using a discretization

with at least 10 boundary elements per wavelength, Bempp can

compute far-field quantities with 1% relative error, with reciprocity

also satisfied to a similar accuracy. The results in [34,35] were

obtained using a standard desktop machine and were limited

to size parameters up to 15, but Bempp supports parallelization

and hence with HPC architectures much larger problems can be

tackled. We end this brief literature review of BEM in atmospheric

physics applications by mentioning recent work by Yu et al. [36] , in

which boundary integral equations were applied to scattering by

multiple dielectric particles illuminated by unpolarized high-order

Bessel vortex beams, and also by Groth et al. [40] , where a “hybrid

numerical-asymptotic” BEM was presented for 2D high frequency

scalar dielectric scattering problems which achieves fixed accuracy

with frequency-independent computational cost. 

A number of different boundary integral equation formula-

tions are available for dielectric scattering problems, the most

popular of which (and the one used in [34] ) is the PMCHWT

formulation due to Poggio, Miller, Chang, Harrington, Wu and Tsai

[41–44] . The PMCHWT formulation provides accurate solutions

for complex scatterer geometries, but is well-known to suffer

from ill-conditioning, requiring a large number of iterations when

the associated linear system is solved using an iterative method

such as the Generalized Minimal Residual Method (GMRES) [45] .

One therefore requires a preconditioning strategy. In [34,35] , alge-

braic preconditioning was applied, based on H-matrices. But this

incurs a large memory overhead. An alternative operator-based

approach, studied e.g. in [46–53] , is “Calderón preconditioning”,

which involves squaring the original boundary integral operator

to regularize the problem at the continuous level, i.e. before

discretization. This accelerates GMRES convergence, at the expense

of an increased cost per GMRES iteration. 

In this paper, we investigate the performance of Calderón pre-

conditioning strategies in the context of light scattering by single

and multiple complex ice crystals. We also investigate another

operator-based preconditioning strategy, “mass-matrix precondi-

tioning”, which uses the discrete strong form of the PMCHWT

operator [54,55] and does not require a second application of the

PMCHWT operator. For the case of scattering by multiple parti-

cles we consider three preconditioning strategies: mass matrix

preconditioning; full Calderón preconditioning, involving a second

application of the PMCHWT operator; and block-diagonal Calderón

preconditioning, in which only the self-interaction blocks are

preconditioned. The numerical performance of the three methods

is compared for a range of wavenumbers, particle geometries and

complex refractive indices. Our numerical simulations are carried

out in Bempp, and the computational cost of each precondition-

ing strategy is measured by the total number of matrix-vector

products (each corresponding to an application of one boundary

integral operator) required to solve the discretized system to a

specified tolerance. 

Our main findings are that: (i) for scattering by a single par-

ticle, mass-matrix preconditioning is more effective than Calderón

preconditioning; and (ii) for scattering by multiple particles, block-

diagonal Calderón preconditioning outperforms both mass-matrix

preconditioning and full Calderón preconditioning. 
The paper is organized as follows. In Section 2 , we outline

he problem of scattering by multiple homogeneous, isotropic, di-

lectric particles. In Section 3 , we review the key properties of

he electromagnetic potential operators and boundary integral op-

rators arising in the boundary integral equation formulation. In

ection 4 , we formulate the PMCHWT boundary integral equa-

ion in the setting of scattering by multiple particles. In Section 5 ,

e describe our Galerkin discretization and the different precon-

itioning strategies we study. In Section 6 , we compare the com-

utational complexity of the different strategies. In Section 7 , we

resent benchmarking results for simple particle shapes, investi-

ating the performance of the preconditioners in various configu-

ations of single and multiple particles, as a function of key param-

ters such as the number, size, separation and material properties

f the constituent particles. In Section 8 , we apply our solver to

 range of scattering problems relevant to light scattering by at-

ospheric ice crystals. Example Python notebooks are available on

ww.bempp.com . Concluding remarks are given in Section 9 . 

. The scattering problem 

We consider electromagnetic scattering by a collection of M dis-

oint arbitrary 3D isotropic homogeneous dielectric scatterers occu-

ying bounded domains �i 
m 

⊂ R 

3 , m = 1 , . . . , M, with boundaries

m 

= ∂�i 
m 

, in a homogeneous exterior medium �e = R 

3 \ ∪ 

M 

m =1 
�i 

m 

,

s in Fig. 1 . The electric and magnetic fields in the interior domains
i 
m 

, m = 1 , . . . , M, and the exterior domain �e , will be denoted

(E 

i 
m 

, H 

i 
m 

) and ( E 

e , H 

e ) respectively. They are assumed to satisfy the

ime-harmonic Maxwell equations 

 × E 

i 
m 

= iωμm 

H 

i 
m 

, in �i 
m 

, m = 1 , . . . , M, (1)

 × H 

i 
m 

= −iωεm 

E 

i 
m 

, in �i 
m 

, m = 1 , . . . , M, (2)

nd 

 × E 

e = iωμe H 

e , in �e , (3)

 × H 

e = −iωεe E 

e , in �e , (4)

ogether with the transmission boundary conditions 

 

i 
m 

( x ) × n = E 

e ( x ) × n , x ∈ �m 

, m = 1 , . . . , M, (5)

 

i 
m 

(x ) × n = H 

e (x ) × n , x ∈ �m 

, m = 1 , . . . , M. (6)

ere we assume a time-dependence of the form e −iωt , with angu-

ar frequency ω > 0. The parameters εm 

, εe and μm 

, μe , represent

espectively the electric permittivity and the magnetic permeabil-

ty of the domains, and n is the unit normal vector on �m 

pointing

nto �e . 

In the scattering problem, an incident field ( E 

inc , H 

inc ) (for in-

tance, a plane wave) gives rise to internal fields (E 

i 
m 

, H 

i 
m 

) in �i 
m 

nd a scattered field ( E 

s , H 

s ) in the exterior domain �e . The latter

s assumed to satisfy the Silver-Müller radiation condition, and the

otal exterior field is then the sum of incident and scattered fields

 

e = E 

inc + E 

s , in �e , (7)

 

e = H 

inc + H 

s , in �e . (8)

It is sufficient to solve for either the electric or magnetic fields

nd then recover the remaining fields by (1,2) and (3,4) . In what

ollows, we will solve for the electric fields E 

i 
m 

, E 

e , which satisfy 

 × (∇ × E 

i 
m 

) − k 2 m 

E 

i 
m 

= 0 , in �i 
m 

, (9)

http://www.bempp.com
http://www.bempp.com


A. Kleanthous, T. Betcke and D.P. Hewett et al. / Journal of Quantitative Spectroscopy & Radiative Transfer 224 (2019) 383–395 385 

Fig. 1. Scattering by multiple particles. 
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 × (∇ × E 

e ) − k 2 e E 

e = 0 , in �e , (10)

here k m 

= ω 

√ 

μm 

εm 

and k e = ω 

√ 

μe εe are the wavenumbers in

he respective domains. 

. Boundary integral operators 

The basic idea behind the BEM is that the fields (E 

i 
m 

, E 

s )

an be represented as potentials whose densities are the (un-

nown) boundary traces (γ −
D,m 

E 

i 
m 

, γ −
N,m 

E 

i 
m 

, γ + 
D,m 

E 

s , γ + 
N,m 

E 

s ) (see

qs (22,23) below). The transmission conditions imply that these

races satisfy certain boundary integral equations, which can be

olved numerically using a BEM. In this section, we briefly recall

he basic definitions of the potentials and boundary integral op-

rators that underpin the BEM. For further details, including a dis-

ussion of the function space setting, the reader is directed to [56] .

Given a wavenumber k and a bounded Lipschitz open set �

ith boundary � = ∂� and outward unit normal vector n , we

efine the electric and magnetic potential operators, applied to a

oundary vector field v , by 

v (x ) := i k 

∫ 
�

v (y ) G (x , y ) d�(y ) 

− 1 

i k 
∇ x 

∫ 
�
∇ y · v (y ) G (x , y ) d�(y ) , (11) 

v (x ) := ∇ x ×
∫ 
�

v (y ) G (x , y ) d�(y ) , (12)

here G (x, y ) = 

exp (i k | x − y | ) 
4 π | x − y | . On � we define the interior ( − )

nd exterior ( + ) Dirichlet (tangential) and Neumann traces γ ±
D 

,
±

N 
(for details see e.g. [56] ), which for smooth vector fields u 

+ 

efined in R 

3 \ �, and u 

− defined in �, satisfy 

±
D u 

±( x ) = u 

±( x ) × n ( x ) , x ∈ �, (13) 

±
N u 

±( x ) = 

1 

ik 
γ ±

D 

(∇ × u 

±( x ) 
)
, x ∈ �, (14) 

long with their jumps and averages 

 

γ·] := γ + 
· − γ −

· , { γ·} := 

1 

(
γ + 

· + γ −
·
)
. (15) 
2 
or the potentials one has the trace and jump relations 

±
N E = γ ±

D H, γ ±
N H = −γ ±

D E, (16) 

 

γD ] E 	 = [ γN ] H = 0 , [ γN ] E = [ γD ] H = −I, (17) 

here I is the identity operator. We then define electric and mag-

etic boundary integral operators on � by 

 := { γD }E = −{ γN }H, (18)

 := { γD }H = { γN }E, (19)

hich by the jump relations also satisfy 

 = γ ±
D E = −γ ±

N H, (20) 

 = γ ±
N E ±

1 

2 

I = γ ±
D H ± 1 

2 

I. (21) 

By the Stratton-Chu formulae [57] , the interior and exterior

elds E 

i 
m 

, m = 1 , . . . , M, and E 

s in our multi-particle scattering

roblem can be represented as 

 

i 
m 

(γ −
D,m 

E 

i 
m 

) + E i m 

(γ −
N,m 

E 

i 
m 

) = 

{
E 

i 
m 

(x ) , x ∈ �i 
m 

, 

0 , x �∈ �i 
m 

, 
(22) 

M ∑ 

m 

H 

e 
m 

(γ + 
D,m 

E 

s ) −
M ∑ 

m 

E e m 

(γ + 
N,m 

E 

s ) = 

{
E 

s (x ) , x ∈ �e , 

0 , x �∈ �e , 
(23) 

here (E i m 

, H 

i 
m 

, γ −
D,m 

, γ −
N,m 

) are (E, H, γ −
D 

, γ −
N 

) for � = �m 

and k =
 m 

, and (E e m 

, H 

e 
m 

, γ + 
D,m 

, γ + 
N,m 

) are (E, H, γ + 
D 

, γ + 
N 

) for � = �m 

and

 = k e , for m = 1 , . . . , M. 

Taking appropriate interior and exterior Dirichlet and Neumann

races of (22,23) , and recalling (20,21) , reveals that the boundary

races (γ −
D,m 

E 

i 
m 

, γ −
N,m 

E 

i 
m 

, γ + 
D,m 

E 

s , γ + 
N,m 

E 

s ) satisfy 

1 

2 

I m 

− A 

i 
m 

)
u 

i 
m 

= 0 , (24) 

1 

2 

I m 

+ A 

e 
m 

)
u 

s 
m 

+ 

M ∑ 

	 � = m 

A m	 u 

s 
	 = 0 , (25) 
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where I m 

is the identity operator associated with �m 

and 

A 

i 
m 

= 

[ 

C i m 

μm 

k m 
S i m 

− k m 
μm 

S i m 

C i m 

] 

, A 

e 
m 

= 

[ 

C e m 

μe 

k e 
S e m 

− k e 
μe 

S e m 

C e m 

] 

, (26)

A m	 = 

[ 

C e m	 
μe 

k e 
S e m	 

− k e 
μe 

S e m	 C e m	 

] 

, (27)

u 

i 
m 

= 

[ 

γ −
D,m 

E 

i 
m 

k m 
μm 

γ −
N,m 

E 

i 
m 

] 

, u 

s 
m 

= 

[ 

γ + 
D,m 

E 

s 

k e 
μe 

γ + 
N,m 

E 

s 

] 

. (28)

Here (C i m 

, S i m 

) are (C, S) for � = �m 

and k = k m 

, and (C e m 

, S e m 

) are

(C, S) for � = �m 

and k = k e . The operators (C e m	 , S e m	 ) map from

�	 to �m 

and are defined for a boundary vector field v 	 on �l by 

C e m	 v 	 := (C e ˜ v l ) | �m 
S e m	 v 	 := (S e ˜ v l ) | �m 

, (29)

where ˜ v l denotes the vector field on ∪ 

M 

j=1 
� j which equals v 	 on �	 

and zero on �j , for j � = 	 ; | �m 
is restriction to �m 

; and (C e , S e ) are

(C, S) for � = ∪ 

M 

j=1 
� j and k = k e . 

The matrices 
(

1 
2 I m 

+ A 

i 
m 

)
and 

(
1 
2 I m 

− A 

e 
m 

)
are scaled versions

of the interior and exterior electromagnetic Calderón projectors on

�m 

, and satisfy the relations [56] (
1 

2 

I m 

+ A 

i 
m 

)2 

= 

(
1 

2 

I m 

+ A 

i 
m 

)
, (30)

(
1 

2 

I m 

− A 

e 
m 

)2 

= 

(
1 

2 

I m 

− A 

e 
m 

)
. (31)

These relations are central to the idea of Calderón preconditioning,

as we shall explain shortly. 

4. The PMCHWT boundary integral formulation 

Equation (24) is a system of boundary integral equations satis-

fied by the interior traces (γ −
D,m 

E 

i 
m 

, γ −
N,m 

E 

i 
m 

) on �m 

, and equation

(25) is a system of boundary integral equations satisfied by the ex-

terior traces (γ + 
D,m 

E 

s , γ + 
N,m 

E 

s ) . It is important to remark that they

hold for any solutions of the Maxwell equations (9,10) . To ob-

tain the solution of our particular dielectric scattering problem we

need to combine equations (24,25) with the transmission condi-

tions (5,6) , which we can rewrite as 

u 

i 
m 

= u 

s 
m 

+ u 

inc 
m 

, m = 1 , . . . , M, (32)

with 

u 

inc 
m 

= 

[ 

γ + 
D,m 

E 

inc 

k e 
μe 

γ + 
N,m 

E 

inc 

] 

. (33)

Eqs. (24,25) and (32) can be combined in numerous different ways,

leading to a range of different boundary integral equation formu-

lations [52,58] . Here we focus on the well-studied PMCHWT for-

mulation [41–44] , which is obtained by subtracting (24) from (25) ,

then eliminating u 

i 
m 

using (32) , to obtain, for each m = 1 , . . . , M,

the system 

(
A 

i 
m 

+ A 

e 
m 

)
u 

s 
m 

+ 

j ∑ 

	 � = m 

A m	 u 

s 
	 = 

(
1 

2 

I − A 

i 
m 

)
u 

inc 
m 

. (34)

We can combine these M systems into a block system 

A u 

s = 

(
1 

2 

I − A 

i 
)

u 

inc , (35)

t  
here 

(36)

(37)

(38)

quation (35) is the PMCHWT formulation, expressed in multi-

article notation. 

. Galerkin method and preconditioning 

Equation (35) is known to be well-posed, when we

iew A as a mapping A : X → X on the function space

 = �
M 

m =1 
H 

− 1 
2 × ( div �m 

, �m 

) 2 , where H 

− 1 
2 × ( div �m 

, �m 

) denotes the

pace of tangential vector fields on �m 

of Sobolev regularity −1 / 2

hose surface divergences also have Sobolev regularity −1 / 2 (see

56] for details). Upon Galerkin discretization (described in more

etail below) it yields a system of linear equations, the solution of

hich can be inserted into the representation formulae (22,23) to

roduce a solution of the original scattering problem. 

Unfortunately, the resulting linear system is ill-conditioned,

eading to slow convergence of iterative solvers such as GMRES.

he origin of the ill-conditioning can be understood from the prop-

rties of the underlying continuous operators. It is enough to con-

ider the single-particle scattering case ( M = 1 ), in which case the

perator A is 

 = A 

e 
1 + A 

i 
1 = 

[ 

C e 1 + C i 1 
μe 

k e 
S e 1 + 

μ1 

k 1 
S i 1 

− k e 
μe 

S e 1 − k 1 
μ1 

S i 1 C e 1 + C i 1 

] 

. (39)

ll-conditioning at the discrete level should be expected because

he operators C i 
1 

and C e 
1 

are compact [59] , with eigenvalues accu-

ulating at zero, while the operators S i 
1 

and S e 
1 

are both the sum

f a compact operator, with eigenvalues accumulating at zero, and

 hypersingular operator, with eigenvalues accumulating at infinity.

or a more detailed discussion we refer the reader to [50] . 

For the single-particle scattering problem it was shown in [50–

2] that the conditioning of the linear system can be dramatically

mproved by “Calderón preconditioning”, a form of operator pre-

onditioning (i.e., applied at the continuous level, before discretiza-

ion) that exploits the projection properties (30,31) of the Calderón
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Table 1 

Linear systems for the weak and strong discrete forms of the continuous oper- 

ators. 

Continuous operator Discrete Weak Form Discrete Strong Form 

A Ax = b M 

−1 Ax = M 

−1 b 

A 

2 AM 

−1 Ax = AM 

−1 b M 

−1 AM 

−1 Ax = M 

−1 AM 

−1 b 

D A DM 

−1 Ax = DM 

−1 b M 

−1 DM 

−1 Ax = M 

−1 DM 

−1 b 
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d  

o  

a  

s  

t

rojectors. Explicitly, it involves applying the operator A to both

ides of (35) to give the equivalent equation 

 

2 u 

s = A 

(
1 

2 

I − A 

i 
)

u 

inc . (40) 

Squaring the operator in this way regularizes the system by

hifting the accumulation points of the spectrum away from the

rigin and taming the hypersingular component. For details we re-

er to [50–52] , but the regularization relies on the following rela-

ions (contained in (30,31) ): 

(S i 1 ) 2 = −1 

4 

I 1 + (C i 1 ) 2 , (S e 1 ) 
2 = −1 

4 

I 1 + (C e 1 ) 
2 , (41) 

 

i 
1 S i 1 + S i 1 C i 1 = 0 , C e 1 S e 1 + S e 1 C e 1 = 0 . (42) 

In particular, (41) implies that (S i 
1 
) 2 and (S e 

1 
) 2 are second-kind

ntegral operators (i.e., of the form “constant times identity plus

ompact operator”) with eigenvalues accumulating at −1 / 4 . This is

eferred to as the “self-regularising property” of the operators S i 
1 
,

 

e 
1 

[51] . 

For the multi-particle scattering case ( M > 1) one can adopt

he same preconditioning strategy and solve the squared system

40) instead of (35) . However, since it is the diagonal blocks in

36) that cause the ill-conditioning (the off-diagonal blocks are

ompact since they map between different boundary components),

ne might imagine that it is sufficient to precondition block-

iagonally by 

 A u 

s = D 

(
1 

2 

I − A 

i 
)

u 

inc , (43) 

here 

(44) 

s we will show experimentally, this block-diagonal preconditioner

chieves a similar improvement in conditioning as for (40) but

ith a reduced computational cost. 

Implementing Calderón preconditioners requires the discretiza-

ion of products of boundary integral operators. This does not sim-

ly involve taking the product of the respective Galerkin matrices.

nstead one needs to introduce appropriate mass matrices, which

rise in the strong form of the Galerkin operators. For further de-

ails about weak and strong discrete forms we refer to [55] ; here

e just outline the details relevant to the problem at hand. 

We start by noting that since H 

− 1 
2 × ( div �m 

, �m 

) is self-dual with

espect to the twisted L 2 dual pairing [56] 

 a , b 〉 �m 
= 

∫ 
�m 

a · (n × b ) d S, 

he space X is self-dual with respect to the pairing 
 

M ⊕ 

m =1 

(
c m 

d m 

)
, 

M ⊕ 

m =1 

(
e m 

f m 

)〉 

:= 

M ∑ 

m =1 

〈 c m 

, f m 

〉 �m 
+ 〈 d m 

, e m 

〉 �m 
. (45) 

o define a Galerkin method we choose discrete trial and test

paces X h , Y h ⊂ X of some common dimension J ∈ N , with bases

 ψ j } J j=1 
and { φ j } J j=1 

. The Galerkin solution u 

s 
h 

= 

∑ J 
j=1 

x j ψ j ∈ X h 
atisfies the variational problem 

 A u 

s 
h , v h 〉 = 

〈 (
1 

2 

I − A 

i 
)

u 

inc , v h 

〉 
, ∀ v h ∈ Y h , (46) 
hich corresponds to the linear system 

x = b , (47) 

here x = (x 1 , . . . , x J ) 
T , b = (b 1 , . . . , b J ) 

T , with b j =
 

(
1 
2 I − A 

i 
)
u 

inc , φ j 〉 and A is the Galerkin matrix with 

 i j = 〈 A ψ j , φi 〉 , i, j = 1 , . . . , J. (48) 

his matrix corresponds to the discrete weak form of A , which

aps X h to the dual space of Y h . The discrete strong form of A ,

hich maps X h to X h , has matrix M 

−1 A , where M is the mass ma-

rix with entries 

 i j = 〈 φi , ψ j 〉 , i, j = 1 , . . . , J. (49) 

he conversion of (47) to the system 

 

−1 Ax = M 

−1 b (50) 

s sometimes known as “mass-matrix preconditioning”. The weak

nd strong forms of the squared operator A 

2 have matrices AM 

−1 A

nd M 

−1 AM 

−1 A respectively, and those of the block-diagonally pre-

onditioned operator D A have matrices DM 

−1 A and M 

−1 DM 

−1 A

espectively, where D is the Galerkin matrix for D . Assuming that

he basis functions are “local”, and are indexed in a natural way so

hat there exists 1 = J 1 < J 2 < . . . < J M 

< J M+1 = J + 1 with supp φj ,

upp ψ j ⊂�m 

for J m 

≤ j < J m +1 , the matrix M is block-diagonal and

 is the block-diagonal part of A . 

For M to be invertible we need X h to be dual to Y h with respect

o the pairing 〈 · , · 〉 , i.e. for 〈 · , · 〉 to be inf-sup stable on X h × Y h .

his places a restriction on the possible choices of trial and test

paces X h and Y h . In our numerical experiments we use 

 h = Y h = 

M ⊕ 

m =1 

(
RWG m 

BC m 

)
, (51) 

here RWG m 

denotes the span of the Rao-Wilton-Glisson basis

unctions [60] on the primal mesh of �m 

and BC denotes the span

f the Buffa-Chris tiansen basis functions [61] on the barycentric

ual mesh of �m 

. Here we are using the fact that BC m 

and RWG m 

re dual with respect to the twisted duality pairing 〈·, ·〉 �m 
. Using

ifferent discretizations for the two components, combined with

he dual pairing (45) , is attractive because it produces a symmet-

ic formulation, i.e. the trial and test spaces coincide. For more

etails of this formulation and its implementation in Bempp, see

62] . In particular we note that in the Bempp implementation, the

C basic functions are ordered and rotated consistently with their

WG siblings. But we note that other discretizations are possible

50,52] and are just as easily implemented with the Bempp soft-

are package. 

. Computational complexity 

For multi-particle scattering problems we have introduced six

ifferent formulations involving the PMCHWT operator A (in weak

r strong form), the squared operator A 

2 (in weak or strong form),

nd the block-diagonally preconditioned operator D A (in weak or

trong form). For reference we present in Table 1 the linear sys-

ems that have to be solved in each of these six formulations. 
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We solve these linear systems using the iterative method GM-

RES. The performance of each preconditioning strategy will be as-

sessed by measuring the computational cost required to solve the

linear system to within a certain prescribed tolerance on the rela-

tive residual. This computational cost depends on both the number

of GMRES iterations required, and the cost of each iteration. 

To measure the cost of each strategy we will count the total

number of matrix-vector products (termed “matvecs” henceforth)

incurred. By a single matvec we mean a single application of one

discretized boundary integral operator C i m 

, C e m 

, S i m 

, S e m 

etc. Appli-

cations of the inverse mass matrix M 

−1 are not included in the

matvec count, since their cost is negligible compared to those of

the other operators. In more detail, the matrix M is block-diagonal

with M sparse blocks. Computing its LU decomposition requires

M independent sparse LU decompositions (one for each scatterer),

which can be effectively parallelized. For two-dimensional prob-

lems the computation of the LU decomposition of a mass matrix is

very efficient using suitable reordering strategies of the elements.

In our case the mass-matrix is formed over a two dimensional

manifold in three dimensional space. This makes the LU decom-

position slightly more expensive, but still reasonably cheap, given

that it only needs to be performed once during a precomputation

for each domain. 

Recalling (36) and (26,27) , we note that a single application of

the matrix A requires 4 M(M + 1) matvecs (4 for each off-diagonal

block and 8 for each diagonal block), and that a single appli-

cation of the matrix D requires 8 M matvecs. Hence the overall

cost of the three formulations (taking into account the initial pre-

multiplication of the right-hand-side) is 

A : 4 M(M + 1)(G + � G/ρ� ) matvecs , (52)

A 

2 : 8 M(M + 1)(G + � G/ρ� ) + 4 M(M + 1) matvecs , (53)

D A : 4 M(M + 3)(G + � G/ρ� ) + 8 M matvecs , (54)

where G is the number of GMRES iterations required to achieve the

specified tolerance, ρ is the number of iterations per GMRES cycle

passed as the restart argument in GMRES, and � · � is the “floor”

function. Note that while the matvec count per GMRES iteration is

the same for the weak and strong forms of each formulation (be-

cause we are excluding mass matrix solves, as explained above),

the value of G (and hence the overall matvec count) will in gen-

eral be very different for the weak and strong forms. Indeed, the

advantage of working with strong forms is one of the key messages

of the paper. 

Of course the overall computational cost is not governed sim-

ply by the total matvec count, since it also depends on the dis-

cretization resolution (mesh width) and the method used to as-

semble the operators. We now make some brief remarks on these

matters. Regarding mesh size, suppose that for each m = 1 , . . . , M,

the scatterer �m 

is discretized on a triangular mesh with N m 

ele-

ments, and set N = max m 

N m 

. In order to capture the wave solution

one needs to use a fixed number (typically around 10) of elements

per exterior wavelength λe := 2 π / k e , so that N ∼ k 2 e . Regarding as-

sembly, for small problems a dense matrix discretization of the

operators is possible, which results in a computational complex-

ity for the assembly and matvec of O(N 

2 ) , or equivalently O(k 4 e ) .

For practical applications this is too expensive. Alternatives are hi-

erarchical matrix ( H-Matrix) [63] or fast multipole methods (FMM)

[64] . H-Matrices are most effective for problems with only a mod-

erate number of wavelengths. Their complexity is O (r N log N) for

assembly and matvec, where r is a measure of the local approxi-

mation rank required to achieve the prescribed accuracy. For non-

oscillatory problems r is effectively constant. For high-frequency
roblems we asymptotically have r ∼ k 2 e ∼ N [65] . However, this is

 worst-case estimate and in practical applications one often ob-

erves a complexity of O(N 

α log N) for some 1 < α < 2, with α typ-

cally being close to 1 even for highly oscillatory problems [66] .

f instead of H-Matrices a high-frequency FMM implementation is

hosen then the complexity is the same but with α = 1 . The price

o pay is that a stable high-frequency FMM is significantly more

hallenging to implement than a standard H-Matrix method. Both

ethods also differ in their realistic timing behaviour for assembly

nd matvecs. As a rule of thumb, while H-Matrices have a longer

ssembly time and faster matvecs, classical high-frequency FMM

as a shorter assembly time but slower matvecs. Hence, optimising

he number of matvecs is especially important for FMM and high-

requency applications. It is also vital when one needs to perform

ultiple solves for different right-hand-sides, e.g. when computing

verages over particle orientation [34] . 

The numerical results in this paper were computed using the

empp boundary element library (available at www.bempp.com ).

t has a built-in, custom-developed H-Matrix implementation,

hich offers thread-based parallelization on single nodes and MPI

ased parallelization on distributed nodes. Sparse Matrix LU fac-

orizations (for the mass matrices) are computed through the Su-

erLU solver interfaced in the sparse matrix module of Python’s

cipy library ( www.scipy.org ). The SuperLU version used in Scipy

oes not offer parallelization, and moreover, Bempp by default can-

ot parallelize the block-diagonal mass matrix computation across

he scatterers in a multi-scattering configuration. While the current

empp version offers sufficient performance for small to medium

ized scattering configurations, a scalable high-frequency FMM im-

lementation is currently in development. 

. Benchmarks 

In this section we compare the performance of the six discrete

ormulations in Table 1 on a range of benchmark problems. In all

ur experiments the incident wave is a plane wave, and the max-

mum BEM mesh element size is 2 π /(10 k e ), so that there are at

east 10 elements per exterior wavelength in each coordinate di-

ection. As was investigated in detail in [34] , for the type of di-

lectric scattering problems considered here, this leads to a typical

iscretization error of approximately 1% ( 10 −2 relative error). (In

articular, we note that, since all our scatterers are polyhedral, the

catterer geometry is captured exactly by the BEM mesh, the only

xception being the spheres in Fig. 5 .) In all our experiments we

erminate the GMRES solver once the relative residual falls below

0 −5 , with the restart option having the default value of ρ = 20

terations. 

We present results for two different refractive indices: one with

eak absorption n 1 = 1 . 311 + 2 . 289 × 10 −9 i and one with high ab-

orption n 2 = 1 . 0833 + 0 . 204i . These correspond to the measured

efractive index of ice at the wavelengths λ1 = 0 . 55 μm and λ2 =
0 . 87 μm respectively [67] . Using these two representative refrac-

ive indices we present numerical results for scattering by different

onfigurations of particles of fixed non-dimensional size at a range

f wavenumbers, simulating scattering by fixed geometrical con-

gurations at a range of different size parameters. Specifically, as

ur definition of size parameter we use the quantity k e r , where r

s the radius of the smallest sphere enclosing the entire scatterer

onfiguration. 

We begin with the case of single-particle scattering ( M = 1 ). In

able 2 we present GMRES iteration and matvec counts for the

eak and strong forms of the unpreconditioned operator A and

he Calderón-preconditioned operator A 

2 , for scattering by a unit

ube. (Note that when M = 1 it holds that D A = A 

2 .) The ill-

onditioning of the unpreconditioned weak form A is clearly visible

n the large number of GMRES iterations (and hence matvecs) in

http://www.bempp.com
http://www.scipy.org
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Fig. 2. Performance of the discrete strong form operators in the case of scattering by a single unit cube ( M = 1 ) as a function of exterior wavenumber k e . Results are shown 

for low absorption (refractive index n 1 = 1 . 311 + 2 . 289 × 10 −9 i ) and high absorption (refractive index n 2 = 1 . 0833 + 0 . 204i ). Other parameters are as in Table 2 . 

Table 2 

Number of GMRES iterations and total matvec count (in brackets) for the different discrete formulations for scatter- 

ing by a single unit cube ( M = 1 ). The mesh size is h = 2 π/ (10 k e ) , and the incident wave is E inc (x ) = p e i k e d ·x , with 

d = (1 , 0 , 0) T and p = (0 , 0 , 1) T . The magnetic permeabilities are μ1 = μe = 1 . The size parameter is k e r = 

√ 

3 / 2 k e , 

with k e as defined in the three different cases. 

n = 1 . 311 + 2 . 289 × 10 −9 i n = 1 . 0833 + 0 . 204i 

k e = 4 k e = 6 k e = 10 k e = 4 k e = 6 k e = 10 

Discrete operator 

A 599 (5024) 548 (4600) 270 (2264) 332 (2784) 316 (2648) 366 (3072) 

M 

−1 A 11 (88) 13 (104) 18 (144) 9 (72) 9 (72) 10 (80) 

AM 

−1 A 34 (568) 38 (632) 58 (968) 30 (504) 31 (520) 34 (568) 

M 

−1 AM 

−1 A 6 (104) 7 (120) 10 (168) 5 (88) 5 (88) 5 (88) 
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he first row of the Table 2 . The results in the lower rows of the ta-

le show that the other three formulations all provide a significant

mprovement in performance compared to the unpreconditioned

eak form. For this single-particle scattering problem the unpre-

onditioned strong form M 

−1 A (i.e. mass-matrix preconditioning)

erforms the best in terms of overall matvec count. While the

alderón preconditioned strong form M 

−1 AM 

−1 A requires the low-

st number of GMRES iterations, the increased matvec count for

ach iteration means that overall it is more expensive than M 

−1 A .

hile the Calderón preconditioned weak form AM 

−1 A (which is

he formulation studied in [50] ) provides a significant improve-

ent over the unpreconditioned weak form A , it cannot compete

ith the strong forms M 

−1 AM 

−1 A and M 

−1 A . 

In Fig. 2 we compare the performance of the two strong forms

 

−1 AM 

−1 A and M 

−1 A as a function of the exterior wavenumber

 e . For both refractive indices the number of GMRES iterations for

 

−1 AM 

−1 A is approximately half that for M 

−1 A (with faster con-

ergence for high absorption), but the matvec count per iteration is

ore than doubled (see (52,53) ), so that the overall matvec count

s lower for M 

−1 A . 

We now consider scattering by multiple particles ( M > 1). In

able 3 we present GMRES iteration and matvec counts for the

eak and strong forms of the unpreconditioned operator A , the

alderón-preconditioned operator A 

2 , and the block-diagonally

reconditioned operator D A , for scattering by an array of four

ubes aligned as in Fig. 3 . As in the single-particle scattering

ase, the strong forms perform significantly better than their cor-

esponding weak forms. And again, mass matrix precondition-

ng M 

−1 A performs better in terms of overall matvec count than
alderón strong form M 

−1 AM 

−1 A . But better than both of these

ethods in terms of overall matvec count is the strong form

f the block-diagonally preconditioned formulation M 

−1 DM 

−1 A ,

hich offers a similar GMRES iteration count to the full Calderón

trong form M 

−1 AM 

−1 A , but at a significantly lower cost per iter-

tion (see (52) - (54) ). 

In Fig. 4 we compare the performance of the three strong forms

 

−1 A , M 

−1 AM 

−1 A and M 

−1 DM 

−1 A , as a function of the exterior

avenumber k e , for (a) low absorption, (b) high absorption, and (c)

ixed zero/low/high absorption. In all cases the block-diagonally

reconditioned form M 

−1 DM 

−1 A achieved the best performance

n terms of overall matvec count, requiring roughly 40% fewer

atvecs than the other two formulations for these four-scatterer

onfigurations. 

In Table 4 we compare the performance of the three strong

orms as the number of scatterers (cubes) increases. The cubes are

ligned as in Fig. 3 . The GMRES iteration count for M 

−1 AM 

−1 A

nd M 

−1 DM 

−1 A is typically half that for M 

−1 A . In the light of

he complexity calculations (52) - (54) , this suggests that the block-

iagonally preconditioned formulation M 

−1 DM 

−1 A should become

ore and more efficient compared to the other two methods as

he number of scatterers grows, with a theoretical improvement

f 50% fewer matvecs compared to the other two methods in the

imit M → ∞ . 

When considering algorithms for scattering by multiple parti-

les it is important to examine the dependence on the distance

etween the scatterers. In Fig. 5 we investigate how the number

f matvecs for the strong form M 

−1 A and the block-diagonally pre-

onditioned formulation M 

−1 DM 

−1 A for a pair of scatterers ( M =
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Table 3 

Number of GMRES iterations and total matvec count (in brackets) for the different discrete formulations for scattering by an 

array of four cubes ( M = 4 ). The cubes have side length 0.4 and are arranged as in Fig. 3 . The mesh size is h = 2 π/ (10 k e ) , 

and the incident wave is E inc (x ) = p e i k e d ·x , with d = (1 / 
√ 

2 , 1 / 
√ 

2 , 0) 
T 

and p = ( 0 , 0 , 1) T . The magnetic permeabilities are 

μm = μe = 1 , for m = 1 , . . . , 4 . 

n = 1 . 311 + 2 . 289 × 10 −9 i n = 1 . 0833 + 0 . 204i 

k e = 7 k e = 12 k e = 22 k e = 7 k e = 12 k e = 22 

Discrete operator 

A 326 (27360) 1193 (100160) 406 (34080) 190 (15920) 535 (44880) 382 (32080) 

M 

−1 A 12 (960) 15 (1200) 24 (20 0 0) 10 (800) 11 (880) 12 (960) 

AM 

−1 A 32 (5360) 48 (8080) 122 (20560) 30 (5040) 36 (60 0 0) 42 (7120) 

M 

−1 AM 

−1 A 6 (1040) 8 (1360) 12 (20 0 0) 5 (880) 6 (1040) 6 (1040) 

DM 

−1 A 35 (4064) 48 (5632) 69 (8096) 36 (4176) 42 (4960) 44 (5184) 

M 

−1 DM 

−1 A 7 (816) 8 (928) 12 (1376) 6 (704) 6 (704) 7 (816) 

Fig. 3. Arrangement of 4, 8 and 16 cubes of side length 0.4. The size parameters k e r are 1.4 k e , 1.6 k e and 2.2 k e respectively, where k e is the exterior wavenumber. 

Table 4 

Performance of the discrete strong form operators for scattering by arrays of 4, 8 and 16 cubes of side 

length 0.4 arranged as in Fig. 3 at refractive indices n = 1 . 311 + 2 . 289 × 10 −9 i and n = 1 . 0833 + 0 . 204i and 

wavenumber k e = 20 . Other parameters are as in Table 3 . 

n = 1 . 311 + 2 . 289 × 10 −9 i n = 1 . 0833 + 0 . 204i 

4 cubes 8 cubes 16 cubes 4 cubes 8 cubes 16 cubes 

Discrete operator 

M 

−1 A 22 (1840) 24 (7200) 32 (35904) 12 (960) 12 (3456) 13 (14144) 

M 

−1 AM 

−1 A 11 (1840) 12 (7200) 16 (35904) 6 (1040) 6 (3744) 7 (16320) 

M 

−1 DM 

−1 A 12 (1376) 12 (4288) 16 (19584) 6 (704) 7 (2528) 7 (8640) 
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2 ) depends on the separation between the scatterers. We report re-

sults both for spherical scatterers and for two branches of a bullet

rosette. For the case of low absorption ( n = 1 . 311 + 2 . 289 × 10 −9 i ),

the behaviour depends on the wavenumber k e . For the smaller

wavenumber k e = 5 the performance of both operators M 

−1 A and

M 

−1 DM 

−1 A is similar. There is no remarkable change in the num-

ber of matvecs as the scatterer separation decreases: we observe

an increase of 24–48 matvecs (corresponding to 1–2 iterations)

for both types of scatterers. For the higher wavenumber k e = 20 ,

M 

−1 DM 

−1 A performs better than M 

−1 A requiring fewer matvecs

at any separation level. The number of matvecs required for both

types of scatterer is higher, and there is a bigger increase in

matvecs as the separation approaches zero. For the case of high

absorption ( n = 1 . 0833 + 0 . 204i ), the behaviour depends on both

the type of scatterer and the wavenumber k e . For the case of

the two branches of a bullet rosette the number of matvecs for

each operator is not affected by the separation between them. For
he small wavenumber k e = 5 , M 

−1 A and M 

−1 DM 

−1 A perform the

ame but for the higher wavenumber k e = 20 , M 

−1 DM 

−1 A per-

orms better than M 

−1 A requiring fewer matvecs. Regarding the

wo spheres, for the small wavenumber k e = 5 , both M 

−1 A and

 

−1 DM 

−1 A perform the same with a modest increase of matvecs

s the separation approaches zero. For the higher wavenumber

 e = 20 , M 

−1 DM 

−1 A performs better than M 

−1 A with both oper-

tors requiring an increased number of matvecs as the separation

pproaches zero. However, even as the separation approaches zero

he number of matvecs is not prohibitive. This is in agreement

ith theoretical results presented in [68,69] . 

These results suggest that for aggregates of scatterers (such as

hose arising in models of ice crystals in cirrus clouds [3] ), a sav-

ng in computational cost might be made by decomposing the

ggregate into its constituent parts, treating the aggregate as a

ultiple scatterer, and applying the block-diagonal preconditioner.

e investigate this idea further in the next section. 
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Fig. 4. Performance of the discrete strong form operators in the case of scattering by an array of four cubes ( M = 4 ) as a function of exterior wavenumber k e . The four 

cubes are aligned as in Fig. 3 . In (a) all cubes have low absorption (refractive index n = 1 . 311 + 2 . 289 × 10 −9 i ); in (b) all cubes have high absorption (refractive index 

n = 1 . 0833 + 0 . 204i ); and in (c) one cube has low absorption, one has high absorption, and the other two have zero absorption (refractive index n = 1 . 2 ). Other parameters 

are as in Table 3 . 
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Fig. 5. Number of matvecs for M 

−1 A and M 

−1 DM 

−1 A for scattering by a pair of identical scatterers as a function of their separation. Results are shown for two spheres of 

radius 0.4, and for two branches of a bullet rosette. In each case we consider two values of k e and two refractive indices n 1 = 1 . 0833 + 0 . 204i and n 2 = 1 . 311 + 2 . 289 × 10 −9 i . 

The individual size parameters k e r are 0.4 k e for each sphere and 0.5 k e for each branch of the bullet rosette. The separation is given in terms of the individual particle’s radius 

r . Other parameters are as in Table 3 . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 5 

Number of GMRES iterations and total matvec count (in brack- 

ets) for the different discrete formulations for single-particle 

scattering ( M = 1 ) by the particles of Fig. 6 . The parameters are 

the same as in Fig. 6 . 

n = 1 . 311 + 2 . 289 × 10 −9 i 

hexagonal with with 

column conventional stepped 

cavity cavity 

Discrete operator 

M 

−1 A 34 (280) 30 (248) 34 (280) 

M 

−1 AM 

−1 A 17 (280) 15 (248) 17 (280) 

f  

t  

f

 

m  

M  
8. Further numerical examples 

In this section we present further numerical results, demon-

strating that the performance observed for the benchmark

problems in the previous section carries over to scattering config-

urations relevant to light scattering by ice crystals in cirrus clouds

[1–3] . 

We first present results for single-particle scattering problems

for three hexagonal columns of increasing geometric complexity:

without cavities, with “conventional” cavities, and with stepped

cavities [70] (see Fig. 6 ). The applicability of Bempp to these par-

ticles was already demonstrated in [34] , where far-field scatter-

ing properties for the three cases were compared and, in the case

of standard hexagonal columns, validated against corresponding T-

matrix calculations. In Fig. 6 we show plots of the squared mag-

nitude | E | 2 of the electric field inside and outside the particles,

restricted to a plane parallel to the column axes, for a particu-

lar scattering configuration. These plots supplement those already

presented in [34] , demonstrating that Bempp can easily generate

near field as well as far field plots. The near field interference pat-

terns for the three particles are similar with a stronger focusing
 a  
or the hexagonal column without cavities. Between the three scat-

erers, the column with the stepped cavities exhibits the weakest

ocusing. 

In Table 5 we report the corresponding GMRES iteration and

atvec counts for the two discrete strong forms M 

−1 A and

 

−1 AM 

−1 A . Both operators perform the same in terms of over-

ll matvec count, despite the mass-matrix preconditioner needing
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Fig. 6. Squared magnitude | E | 2 of the electric field for single-particle scattering (M = 1) by a hexagonal column of increased complexity (with no cavities, with a conventional 

cavity and with a stepped-cavity) restricted to the xz plane. The incident wave is E inc (x ) = p e i k e d ·x , with d = (1 , 0 , 0) T and p = (0 , 0 , 1) T , with k e = 10 , n = 1 . 311 + 2 . 289 ×
10 −9 i , k 1 = nk e , μe = μ1 = 1 . The size parameter k e r is 30. The mesh size is h = 2 π/ (10 k e ) . 

Fig. 7. Squared magnitude | E | 2 of the electric field for scattering by multiple particles ( M > 1) restricted to different planes. In the case of the bullet-rosette with 6 branches 

( M = 6 ) the incident wave is E inc (x ) = p e i k e d ·x , with d = ( 
√ 

3 / 2 , 0 , 1 / 2) T and p = (0 , 1 , 0) T , with k e = 25 , n = 1 . 0833 + 0 . 204i , k m = nk e , and μe = μm = 1 , for m = 1 , . . . , 6 . 

The size parameter of the aggregate is k e r = 25 
√ 

2 . For the array of five hexagonal columns ( M = 5 ) the incident wave is E inc (x ) = p e i k e d ·x , with d = (1 / 
√ 

2 , 1 / 
√ 

2 , 0) 
T 

and p = 

(0 , 0 , 1) T , with k e = 5 , n = 1 . 311 + 2 . 289 × 10 −9 i , k m = nk e , and μe = μm = 1 , for m = 1 , . . . , 5 . The size parameter of the aggregate is k e r = 14 . For the aggregate of randomly 

oriented hexagonal columns and plates ( M = 5 ) the incident wave is E inc (x ) = p e i k e d ·x , with d = (1 / 
√ 

2 , 0 , 1 / 
√ 

2 ) 
T 

and p = (0 , 1 , 0) T , with k e = 15 , n = 1 . 311 + 2 . 289 × 10 −9 i , 

k m = nk e , and μe = μm = 1 , for m = 1 , . . . , 5 . The size parameter of the aggregate is k e r = 49 . The mesh size in all cases is h = 2 π/ (10 k e ) . 

t  

m  

e  

p

 

m  

p  

h  

g  

F  

fi  

i  

F  

s  
wice the number of GMRES iterations. Interestingly, the number of

atvecs and iterations required is roughly the same for all three

xamples, which demonstrates the effectiveness of BEM for com-

lex particle geometries. 

We now present results for three problems of scattering by

ultiple particles involving ensembles or aggregates of simpler

articles: a six-branch bullet rosette, an aligned array of five
exagonal columns of the same dimensions, and a random aggre-

ate of five hexagonal columns/plates of differing dimensions (see

ig. 7 ). In Fig. 7 we show the scatterer geometries, along with the

elds obtained using the BEM formulation for particular scatter-

ng configurations (with parameters detailed in the figure caption).

or the bullet rosette we present the near field plot of | E | 2 re-

tricted to the (vertical) xz -plane, for the aligned array the near
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Table 6 

Number of GMRES iterations and total matvec count (in brack- 

ets) for the different discrete formulations for scattering by 

the particles ( M > 1) of Fig. 7 . The parameters are the same 

as in Fig. 7 . 

6-branch 5 hex. random 

bullet columns columns 

rosette 

Discrete operator 

M 

−1 A 15 (2520) 52 (6480) 38 (4680) 

M 

−1 AM 

−1 A 8 (2856) 25 (6360) 19 (4680) 

M 

−1 DM 

−1 A 8 (1776) 23 (3880) 19 (3080) 
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field plot of | E | 2 restricted to the (horizontal) xy -plane, and for

the random aggregate the near field plot of | E | 2 restricted to the

(vertical) xz -plane. The calculation was carried out on a high-spec

desktop machine with assembly taking roughly 23 minutes and the

linear solve taking roughly 7 minutes in the case of the random

aggregate. 

The corresponding GMRES iteration and matvec counts are

reported in Table 6 . We note that for all three multi-particle

configurations, the block-diagonally Calderón-preconditioned ap-

proach M 

−1 DM 

−1 A provides a significant saving in overall matvec

count compared to the other two approaches, even though the

constituent particles in the bullet rosette and random aggregate

are close enough to touch each other at certain points. 

9. Conclusion 

We have carried out a detailed study into the performance

of various operator-based preconditioning strategies for Galerkin

BEM discretizations of the PMCHWT boundary integral equation

for electromagnetic scattering by absorbing dielectric particles

of different shapes, sizes and refractive indices. Specifically, we

considered the weak and strong discrete forms of (i) the PM-

CHWT operator A , (ii) its Calderón-preconditioned square A 

2 ,

and, for multiple scatterers, (iii) a block-diagonally Calderón-

preconditioned operator D A , in which only the self-interaction

blocks are preconditioned. Numerical performance was measured

in the number of matrix-vector products (“matvecs”) incurred

when the corresponding linear system was solved using GMRES. 

Overall we found that the strong forms (which involve multi-

plications by inverse mass-matrices) required significantly fewer

matvecs than their weak counterparts. The strong form of the

Calderón-preconditioned operator A 

2 in general led to a reduc-

tion by 50% in the number of GMRES iterations required compared

to the strong form of A (i.e., simple mass-matrix precondition-

ing). But in terms of total matvecs the increased cost per iteration

outweighed this gain. Hence for single scattering applications we

found that simple mass-matrix preconditioning was more effective

than Calderón preconditioning. 

For problems of scattering by multiple particles we found that

a saving of up to 50% in total matvec count compared to the

mass-matrix preconditioner could be achieved by using the strong

form of the block-diagonal Calderón preconditioned operator D A .

Provided that the particles were sufficiently absorbing, this gain

in performance was found to hold even when the particles were

close, or even touching each other. 

Using the BEM software library Bempp the preconditioners

were applied to various scattering configurations relevant to the

scattering of light by atmospheric ice crystals including hexago-

nal columns with conventional and stepped cavities, bullet rosettes

and a random aggregate of hexagonal columns, demonstrating the

applicability of the methods for practical scattering simulations. 
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