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Operator products occur naturally in a range of regularized boundary integral equation formulations.
However, while a Galerkin discretisation only depends on the domain space and the test (or dual)
space of the operator, products require a notion of the range. In the boundary element software
package Bempp we have implemented a complete operator algebra that depends on knowledge
of the domain, range and test space. The aim was to develop a way of working with Galerkin
operators in boundary element software that is as close to working with the strong form on paper as
possible while hiding the complexities of Galerkin discretisations. In this paper, we demonstrate the
implementation of this operator algebra and show, using various Laplace and Helmholtz example
problems, how it significantly simplifies the definition and solution of a wide range of typical
boundary integral equation problems.
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1 INTRODUCTION

A typical abstract operator problem can be formulated as

A𝜑 = 𝑓,

where A is an operator mapping from a Hilbert space ℋ1 into another Hilbert space ℋ2 with
the unknown 𝜑 ∈ ℋ1 and known 𝑓 ∈ ℋ2. Many modern operator preconditioning strategies
depend on the idea of having a regulariser R : ℋ2 → ℋ1 and solving the equation

RA𝜑 = R𝑓 (1)

instead. This is particularly common in the area of boundary integral equations, where
integral operators can be efficiently preconditioned by operators of opposite order. Now
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suppose that we want to discretise (1) using a standard Galerkin method. The discretised
problem is

𝑅𝑀−1𝐴𝜑 = 𝑅𝑓 , (2)

where 𝑅 and 𝐴 are the Galerkin discretisations of R and A, respectively, and 𝑓 is the vector
of coefficients of the projection of 𝑓 onto the finite dimensional subspace of ℋ2. The matrix
𝑀 is the mass matrix between the basis functions of the finite dimensional subspaces of ℋ2

and ℋ1.
In order to solve (2), we have to assemble all involved matrices, form the right-hand side,

implement a function that evaluates 𝑅𝑀−1𝐴𝑣 for a given vector 𝑣, and then solve (2) with
GMRES or another iterative solver of choice. Ideally, we would not have to deal with these
implementational details and just directly write the following code.

A = operator(...)
R = operator(...)
f = function(...)
phi = gmres(R * A, R * f)

Note that at the end, the solution phi is again a function object. In order for this code snippet
to work and the mass matrix 𝑀 to be assembled automatically, either the implementation
of the operator product needs to be aware of the test space of A and domain space of R, or
the software definition of these operators need to contain information about their ranges. In
this paper we will follow this second approach by defining the notion of the strong form of a
Galerkin discretisation and demonstrate its benefits.

An implementation of a product algebra based on this idea is contained in the Python/C++
based boundary element library Bempp (www.bempp.com) [13], originally developed by the
authors of this paper. Bempp is a comprehensive library for the solution of boundary integral
equations for Laplace, Helmholtz and Maxwell problems. The leading design principle of
Bempp is to allow a description of BEM problems in Python code that is as close to the
mathematical formulation as possible, while hiding implementational details of the underlying
Galerkin discretisations. This allows us to formulate complex block operator systems such
as those arising in Calderón preconditioned formulations of transmission problems in just
a few lines of code. Initial steps towards a Bempp operator algebra were briefly described
in [13] as part of a general library overview. The examples in this paper are based on the
current version (Bempp 3.3), which has undergone significant development since then and
now contains a complete and mature product algebra for operators and grid functions.
As examples for the use of an operator algebra in more complex settings, we discuss:

the efficient assembly of the hypersingular operator via a representation using single layer
operators; the assembly of Calderón projectors and the computation of their spectral
properties and the Calderón preconditioned solution of acoustic transmission problems.

A particular challenge is the design of product algebras for Maxwell problems. The stable
discretisation of the electric and magnetic field operators for Maxwell problems requires the
use of a non-standard skew symmetric bilinear form. The Maxwell case is discussed in much
more detail in [12].
The paper is organised as follows. In Section 2 we review basic definitions of boundary

integral operators for Laplace and Helmholtz problems. In Section 3 we introduce the basic
concepts of a Galerkin product algebra and discuss some implementational details. Section 4
then gives a first application to the fast assembly of hypersingular operators for Laplace and
Helmholtz problems. Then, in Section 5 we discuss block operator systems at the example
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of Calderón preconditioned transmission problems. The paper concludes with a summary in
Section 6.

While most of the mathematics presented in this paper is well known among specialists, the
focus of this paper is on hiding mathematical complexity of Galerkin discretisations. With the
wider penetration and acceptance of high-level scripting languages such us Matlab, Python
and Julia in the scientific computing community, we now have the tools and structures to
make complex computational operations accessible for a wide audience of non-specialist
users, making possible the fast dissemination of new algorithms and techniques beyond
traditional mathematical communities.

2 BOUNDARY INTEGRAL OPERATORS FOR SCALAR LAPLACE AND
HELMHOLTZ PROBLEMS, AND THEIR GALERKIN DISCRETISATION

In this section, we give the basic definitions of boundary integral operators for Laplace and
Helmholtz problems and some of their properties needed later. More detailed information
can be found in e.g. [11, 14].

We assume that Ω ⊂ R3 is a piecewise smooth bounded Lipschitz domain with boundary
Γ. By Ω+ := R3∖Ω we denote the exterior of Ω. We denote by 𝛾±

0 the associated interior
(-) and exterior (+) trace operators and by 𝛾±

1 the interior and exterior normal derivative
operators. We always assume that the normal direction 𝜈 points outwards into Ω+.
The average of the interior and exterior trace is defined as {{𝛾0𝑓}} := 1

2

(︀
𝛾+
0 𝑓 + 𝛾–

0𝑓
)︀
.

Correspondingly, the average normal derivative is defined as {{𝛾1𝑓}} := 1
2

(︀
𝛾+
1 𝑓 + 𝛾–

1𝑓
)︀
.

2.1 Operator definitions

We consider a function 𝜑– ∈ 𝐻1(Ω) satisfying the Helmholtz equation −∆𝜑– − 𝑘2𝜑– = 0,
where 𝑘 ∈ R. By Green’s representation theorem we have

𝜑–(x) = [𝒱𝛾–
1𝜑

–] (x)− [𝒦𝛾–
0𝜑

–] (x), x ∈ Ω (3)

for the single layer potential operator 𝒱 : 𝐻−1/2(Γ) → 𝐻1
loc(Ω ∪ Ω+) defined by

[𝒱𝜇] (x) =
∫︁
Γ

𝐺(x,y)𝜇(y) d𝑠(y), 𝜇 ∈ 𝐻−1/2(Γ)

and the double layer potential operator 𝒦 : 𝐻1/2(Γ) → 𝐻1
loc(Ω ∪ Ω+) defined by

[𝒦𝜉] (x) =

∫︁
Γ

𝜕𝐺(x,y)

𝜕𝜈(y)
𝜉(y) d𝑠(y), 𝜉 ∈ 𝐻1/2(Γ).

Here, 𝐺(x,y) := ei𝑘|x−y|

4π|x−y| is the associated Green’s function. If 𝑘 = 0, we obtain the special

case of the Laplace equation −∆𝑢 = 0.
We now define the following boundary operators as the average of the interior and exterior

traces of the single layer and double layer potential operators:

∙ The single layer boundary operator V : 𝐻−1/2(Γ) → 𝐻1/2(Γ) defined by

[V𝜇] (x) = {{𝛾0𝒱𝜇}}(x), 𝜇 ∈ 𝐻−1/2(Γ), x ∈ Γ.

∙ The double layer boundary operator K : 𝐻1/2(Γ) → 𝐻1/2(Γ) defined by

[K𝜉] (x) = {{𝛾0𝒦𝜉}}(x), 𝜉 ∈ 𝐻1/2(Γ), x ∈ Γ.

∙ The adjoint double layer boundary operator K′ : 𝐻−1/2(Γ) → 𝐻−1/2(Γ) defined by

[K′𝜇] (x) = {{𝛾1𝒱𝜇}}(x), 𝜇 ∈ 𝐻−1/2(Γ), x ∈ Γ.
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∙ The hypersingular boundary operator W : 𝐻1/2(Γ) → 𝐻−1/2(Γ) defined by

[W𝜉] (x) = −{{𝛾1𝒦𝜉}}(x), 𝜉 ∈ 𝐻1/2(Γ), x ∈ Γ.

Applying the interior traces 𝛾–
0 and 𝛾–

1 to the Green’s representation formula (3), and taking
into account the jump relations of the double layer and adjoint double layer boundary
operators on the boundary Γ [14, Section 6.3 and 6.4] we arrive at[︂

𝛾–
0𝜑

–

𝛾–
1𝜑

–

]︂
=

(︀
1
2 Id+ A

)︀ [︂𝛾–
0𝜑

–

𝛾–
1𝜑

–

]︂
(4)

with

A :=

[︂
−K V
W K′

]︂
, (5)

which holds almost everywhere on Γ. The operator 𝒞– := 1
2 Id+ A is also called the interior

Calderón projector. If 𝜑+ is a solution of the exterior Helmholtz equation −∆𝜑+− 𝑘2𝜑+ = 0
in Ω+ with boundary condition at infinity

lim
|x|→∞

|x|
(︂

𝜕

𝜕|x|
𝜑+ − i𝑘𝜑+

)︂
= 0

for 𝑘 ̸= 0 and

lim
|x|→∞

|𝜑+(x)| = 𝒪
(︂

1

|x|

)︂
for 𝑘 = 0, Green’s representation formula is given as

𝜑+(x) =
[︀
𝒦𝛾+

0 𝜑+
]︀
(x)−

[︀
𝒱𝛾+

1 𝜑+
]︀
(x), x ∈ Ω+. (6)

Taking the exterior traces 𝛾+
0 and 𝛾+

1 now gives the system of equations[︂
𝛾+
0 𝜑+

𝛾+
1 𝜑+

]︂
=

(︀
1
2 Id− A

)︀ [︂𝛾+
0 𝜑+

𝛾+
1 𝜑+.

]︂
(7)

with associated exterior Calderón projector 𝒞+ := 1
2 Id− A.

2.2 Galerkin discretisation of integral operators

Let 𝒯ℎ be a triangulation of Γ with 𝑁 piecewise flat triangular elements 𝜏𝑗 and 𝑀 associated
vertices p𝑖. We define the function space 𝑆0

ℎ of elementwise constant functions 𝜑𝑗 such that

𝜑𝑗(x) =

{︃
1, x ∈ 𝜏𝑗

0, otherwise,

and the space 𝑆1
ℎ of globally continuous, piecewise linear hat functions 𝜌𝑖 such that

𝜌𝑖(pℓ) =

{︃
1, 𝑖 = ℓ

0, otherwise.

Denote by ⟨𝑢, 𝑣⟩Γ the standard surface dual form
∫︀
Γ
𝑢(x)𝑣(x) d𝑠(x) of two functions 𝑢 and 𝑣.

By restricting 𝐻1/2(Γ) onto 𝑆1
ℎ and 𝐻−1/2(Γ) onto 𝑆0

ℎ, we obtain the Galerkin discretizations
𝑉 , 𝐾, 𝐾 ′, 𝑊 defined as

[𝑉 ]𝑖𝑗 := ⟨V𝜑𝑗 , 𝜑𝑖⟩Γ, [𝐾]𝑖𝑗 := ⟨K𝜌𝑗 , 𝜑𝑖⟩Γ
[𝐾 ′]𝑖𝑗 := ⟨K′𝜑𝑗 , 𝜌𝑖⟩Γ, [𝑊 ]𝑖𝑗 := ⟨W𝜌𝑗 , 𝜌𝑖⟩Γ

From this definition it follows that 𝐾 ′ = 𝐾𝑇 . A computable expression of 𝑊 using weakly
singular integrals is given in Section 4.
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A problem with this definition of discretisation spaces is that 𝑆0
ℎ and 𝑆1

ℎ have a different
number of basis functions, leading to non-square matrices 𝐾 and 𝐾 ′. Hence, it is only
suitable for discretisations of integral equations of the first-kind involving only V or W on
the left-hand side. There are two solutions to this.

(1) Discretise both spaces 𝐻1/2(Γ) and 𝐻−1/2(Γ) with the continuous space 𝑆1
ℎ. This

works well if Γ is sufficiently smooth. However, if Γ has corners then Neumann data in
𝐻−1/2(Γ) is not well represented by continuous functions.

(2) Instead of the space 𝑆0
ℎ use the space of piecewise constant functions 𝜑𝐷 on the dual

grid which is obtained by associating each element of the dual grid with one vertex of
the original grid. We denote this piecewise constant space by 𝑆0

𝐷,ℎ. With this definition
of piecewise constant functions also the matrix 𝐾 is square. Moreover, the mass matrix
between the basis functions in 𝑆0

ℎ and 𝑆0
𝐷,ℎ is inf-sup stable [2, 8].

3 GALERKIN PRODUCT ALGEBRAS AND THEIR IMPLEMENTATION

In this section we discuss the product of Galerkin discretisations of abstract Hilbert space
operators and how a corresponding product algebra can be implemented in software. While the
mathematical basis is well known, most software libraries do not support a product algebra,
making implementations of operator based preconditioners and many other operations more
cumbersome than necessary. This section proposes a framework to elegantly support operator
product algebras in general application settings. The formalism introduced here is based
on Riesz mappings between dual spaces. A nice introduction in the context of Galerkin
discretizations is given in [9].

3.1 Abstract formulation

Let A : ℋdom
A → ℋran

A and B : ℋdom
B → ℋran

B be operators mapping between Hilbert spaces.
If ℋran

A ⊂ ℋdom
B the product

𝑔 = BA𝑓 (8)

is well defined in ℋran
B . We now want to evaluate this product using Galerkin discretisations

of the operators A and B.
Let ℋdual

A be dual to ℋran
A with respect to a given dual pairing ⟨·, ·⟩A : ℋran

A ×ℋdual
A → C.

Correspondingly, we define the space ℋdual
B as dual space to ℋran

B with respect to a dual
pairing ⟨·, ·⟩B.
Defining the function 𝑞 = A𝑓 , the operator product (8) can equivalently be written as

𝑞 = A𝑓
𝑔 = B𝑞.

Rewriting this system in its variational form leads to the problem of finding (𝑞, 𝑔) ∈
ℋran

A ×ℋran
B such that

⟨𝑞, 𝜇⟩A = ⟨A𝑓, 𝜇⟩A
⟨𝑔, 𝜏⟩B = ⟨B𝑞, 𝜏⟩B

(9)

for all (𝜇, 𝜏) ∈ ℋdual
A ×ℋdual

B . We now introduce the finite dimensional subspaces 𝒱dom
ℎ,X ⊂

ℋdom
X , 𝒱ran

ℎ,X ⊂ ℋran
X and 𝒱dom

ℎ,X ⊂ ℋdual
X with basis functions 𝜁domX,𝑗 , 𝜁ranX,𝑖 , 𝜁

dual
X,ℓ for X = A,B.

In what follows we assume that the dimension of 𝒱dual
ℎ,X is identical to the dimension of 𝒱ran

ℎ,X

and that the associated dual-pairing is inf-sup stable in the sense that

sup
𝜉dual
X ∈𝒱dual

ℎ,X

⟨𝜉ranX , 𝜉dualX ⟩X
‖𝜉dualX ‖ℋdual

X

≥ 𝑐X‖𝜉ranX ‖ℋran
X

, ∀𝜉ranX ∈ 𝒱ran
ℎ,X
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for some 𝑐𝑋 > 0, implying that the associated mass matrix is invertible. The discrete version
of (9) is now given as

𝑀A𝑞 = 𝐴𝑓 ,

𝑀B𝑔 = 𝐵𝑞,

where [𝑀X]ℓ,𝑖 = ⟨𝜑ran
X,𝑖 , 𝜑

dual
X,ℓ ⟩X, X = A,B. are the mass matrices of the dual pairings. The

vectors 𝑓 , 𝑞 and 𝑔 are the vectors of coefficients of the corresponding functions. Combining
both equations we obtain

𝑞 = 𝑀−1
B 𝐵𝑀−1

A 𝐴𝑓 .

The matrix 𝐴 is also called the discrete weak form of the operator A. This motivates the
following definition.

Definition 3.1. Given the discrete weak form 𝐴 defined as above. We define the associated
discrete strong form as the matrix

𝐴𝑆 := 𝑀−1
A 𝐴.

Note that 𝑀−1
𝐴 is the discrete Riesz map from the dual space into the range space of 𝐴

[9]. The notation of the discrete strong form allows us to define a Galerkin product algebra
as follows.

Definition 3.2. Given the operator product C := BA. We define the associated discrete
operator product weak form as

𝐶 := 𝐵 ⊙𝐴 := 𝐵 ·𝐴𝑆 = 𝐵𝑀−1
A 𝐴

and the associated discrete strong form as

𝐶𝑆 := 𝑀−1
B (𝐵 ⊙𝐴) .

We note that the a direct discretisation ⟨BA𝜑dom
A,𝑗 , 𝜑dual

B,ℓ ⟩ is usually not identical to 𝐶

as the latter is computed as the solution of the operator system (9) whose discretisation
error also depends on the space 𝒱ran

ℎ,A and the corresponding discrete dual. However, the

discretisation of the operator product BA can rarely be computed directly and solving (9) is
usually the only possibility to evaluate this product.

This discrete operator algebra is associative since

(𝐶 ⊙𝐵)⊙𝐴 = 𝐶𝑀−1
B 𝐵𝑀−1

A 𝐴 = 𝐶 ⊙ (𝐵 ⊙𝐴) .

Moreover, since a Hilbert space is self-dual in its natural inner product (·, ·) the discretization[︀
𝑀dom

A

]︀
𝑖𝑗
=

(︀
𝜁dom𝐴,𝑖 , 𝜁dom𝐴,𝑗

)︀
of the identity operator IddomA is the right unit element with respect to this discrete operator
algebra. Correspondingly, the matrix 𝑀 ran

A is the left unit element.
We have so far considered the approximation of the weak form ⟨BA𝜑dom

A,𝑗 , 𝜑dual
B,ℓ ⟩, where

the operator B acts on A𝜑dom
A,𝑗 . However, there are situations where we want a discrete

approximation of the product ⟨A𝜑dom
A,𝑗 ,B𝜑dom

B,ℓ ⟩ for B : ℋdom
B → ℋdual

A . An example for
the assembly of hypersingular operators will be given later. Note that if y is a coefficient
vector of a function 𝜑 ∈ ℋdom

B then ỹ = 𝑀−1
𝐵 𝐵y is the coefficient vector to the Galerkin

approximation of 𝜑 = B𝜑. Hence, a discrete approximation of the weak form ⟨A𝜑dom
A,𝑗 ,B𝜑dom

B,ℓ ⟩
is given by

𝐵𝐻 ·𝑀−𝐻
B ·𝐴 =

[︀
𝐵𝑆

]︀𝐻
𝐴.

This motivates the following definition.
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Definition 3.3. We define the dual discrete product weak form associated with the operators
A and B as

𝐵 ⊙𝐷 𝐴 := 𝐵𝐻 ·𝑀−𝐻
B ·𝐴 (10)

and the associated discrete strong form as

𝐶 := 𝑀−1
B,A (𝐵 ⊙𝐷 𝐴) .

where 𝑀B,A is the mass matrix between the domain space of 𝐵 and the range space of 𝐴.

3.2 Example: Operator preconditioned Dirichlet problems

As a first example, we describe the formulation of an operator preconditioned interior
Dirichlet problem using the above operator algebra. We want to solve

−∆𝜑– − 𝑘2𝜑– = 0 in Ω

𝛾0𝜑
– = 𝑔 on Γ

for a given function 𝑔 ∈ 𝐻1/2(Γ). From the first line of (4) we obtain that

𝛾–
0𝜑

– =
(︀
1
2 Id− K

)︀
𝛾–
0𝜑

– + V𝛾–
1𝜑

–.

Substituting the boundary condition, we obtain the integral equation of the first kind

V𝛾–
1𝜑

– =
(︀
1
2 Id+ K

)︀
𝑔. (11)

The operator V : 𝐻−1/2(Γ) → 𝐻1/2(Γ) is a pseudodifferential operator of order −1 and
can be preconditioned by the hypersingular operator W : 𝐻1/2(Γ) → 𝐻−1/2(Γ), which is a
pseudodifferential operator of order 1 [8, 15]. We arrive at the preconditioned problem

WV𝛾–
1𝜑

– = W
(︀
1
2 Id+ K

)︀
𝑔. (12)

Note that the operator W is singular if 𝑘 = 0. In that case a rank-one modification of the
hypersingular operator can be used [15]. For the Galerkin discretisation of (12) we use the
standard 𝐿2 based dual pairing ⟨·, ·⟩ defined by

⟨𝑢, 𝑣⟩ =
∫︁
Γ

𝑢(𝑥)𝑣(𝑥)𝑑𝑥, 𝑢, 𝑣 ∈ 𝐿2(Γ)

and note that the spaces 𝐻1/2(Γ) and 𝐻−1/2(Γ) are dual with respect to this dual pairing.
For the discretisation of the operators we use the spaces 𝑆0

𝐷,ℎ and 𝑆1
ℎ as described in

Section 2.2. Using the notation introduced in Section 3.1 we obtain the discrete system

𝑊 ⊙ 𝑉 𝑥 = 𝑊 ⊙
(︀
1
2𝑀 +𝐾

)︀
𝑔, (13)

where 𝑥 is the vector of coefficients of the unknown function 𝜑ℎ in the basis 𝑆0
𝐷,ℎ. The

matrix 𝑀 is the discretisation of the identity operator on 𝐻1/2(Γ). If in addition we want
to use Riesz (or mass matrix) preconditioning we can simply take the discrete strong forms
of the product operators on the left and right hand side of (13).

In terms of mathematics the definition of the discrete strong form is simply a notational
convenience. We could equally write (13) by directly inserting the mass matrix inverses.
The main advantage of an operator product algebra first becomes visible in a software
implementation that directly supports the notions of discrete strong forms and operator
products. This is described below.
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3.3 Basic software implementation of an operator algebra

Based on the definition of a discrete product algebra for Galerkin discretisations, we can
now discuss the software implementation. Two concepts are crucial: namely that of a grid
function, which represents functions defined on a grid; and that of an operator, which maps
grid functions from a discrete domain space into a discrete range space.

3.3.1 Grid functions. We start with the description of a grid function. A basic grid
function object is defined by a discrete function space and a vector of coefficients on the
space. However, for practical purposes this is not always sufficient. Consider the following
situation of multiplying the discrete single layer operator 𝑉 , discretised with the space of
piecewise constant functions 𝑆0

ℎ and a vector of coefficients 𝑓 . The result 𝑦 = 𝑉 𝑓 is defined

as 𝑦𝑖 =
∑︀𝑛

𝑗=1 𝑓𝑗⟨V𝜑𝑗 , 𝜑𝑖⟩. Since the single layer operator maps onto 𝐻1/2(Γ) we would like

to obtain a suitable vector of coefficients 𝑦 of piecewise linear functions in 𝑆1
ℎ such that

𝑦 = 𝑀𝑦,

where 𝑀 is the rectangular mass-matrix between the spaces 𝑆0
ℎ and 𝑆1

ℎ. Solving for 𝑦 is only
possible in a least-squares sense. Moreover, for these two spaces the matrix 𝑀 may even be
ill-conditioined or singular in the least-squares sense, making it difficult to obtain a good
approximation in the range space. Hence, we also allow the definition of a grid function
purely through the vector of coefficients into the dual space.
The constructors to define a grid function either through coefficients in a given space or

through projections into a dual space are defined as follows.

fun = GridFunction(space, coefficients=...)
fun = GridFunction(space, dual_space=..., projections=...)

Associated with these two constructors are two methods that extract the vectors of coefficients
or projections.

coeffs = fun.coefficients()
proj = fun.projections(dual_space)

If the grid function is initialised with a coefficient vector, then the first operation just returns
this vector. The second operation sets up the corresponding mass matrix M and returns
the vector M * coeffs . If the grid function is initialised with a vector of projections
and a corresponding dual space then access to the coefficients results in a solution of a
linear system if the space and dual space have the same number of degrees of freedom.
Otherwise, an exception is thrown. If the projections method is called and the given
dual space is identical to the original dual space on initialisation the vector projections
is returned. Otherwise, first a conversion to coefficient form via a call to coefficients()
is attempted.
This dual representation of a grid function via either a vector of coefficients or a vector

of projections makes it possible to represent functions in many standard situations, where
a conversion between coefficients and projections is mathematically not possible and not
necessary for the formulation of a problem.

3.3.2 Operators. Typically, in finite element discretisation libraries the definition of an
operator requires an underlying weak form, a domain space and a test space. However, to
support the operator algebra introduced in Section 3.1 the range space is also required.
Hence, we represent a constructor for a boundary operator in the following form.
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op = operator(domain, range_, dual_to_range, ...)

Here, the objects domain, range_ and dual_to_range describe the finite dimensional
domain, range and dual spaces. Each operator provides the following two methods.

discrete_weak_form = op.weak_form()
discrete_strong_form = op.strong_form()

The first one returns the standard discrete weak form while the second one returns the discrete
strong form. The discrete_weak_form and discrete_strong_form are objects that
implement at least a matrix-vector routine to multiply a vector with the corresponding
discrete operator. The multiplication with the inverse of the mass matrix in the strong
form is implemented via computing an LU decomposition and solving the associated linear
system.
Important for the performance is caching. The weak form is computed in the first call

to the weak_form() method and then cached. Correspondingly, the LU decomposition
necessary for the strong form is computed only once and then cached.

3.3.3 Operations on operators and grid functions. With this framework the multiplication
res_fun = op * fun of a boundary operator op with a grid function fun can be elegantly
described in the following way:

result_fun = GridFunction(
space=op.range_,
dual_space=op.dual_to_range,
projections=op.weak_form() * fun.coefficients)

Alternatively, we could have more simply presented the result as

result_fun = GridFunction(
space=op.range_,
coefficients=op.strong_form() * fun.coefficients)

However, the latter ignores that there may be no mass matrix transformation available that
could map from the discrete dual space to the discrete range space.
As an example, we present a small code snippet from Bempp that maps the constant

function 𝑓(x) = 1 on the boundary of the cube to the function 𝑔 = V𝑓 , where V is the
Laplace single layer boundary operator. 𝑓 is represented in a space of piecewise constant
functions on the dual grid and 𝑔 is represented in a space of continuous, piecewise linear
functions, reflecting the smoothing properties of the Laplace single layer boundary operator.
The following lines define the cube grid with an element size of ℎ = 0.1 and the spaces of
piecewise constant functions on the dual grid, and continuous, piecewise linear continuous
functions on the primal grid.

grid = bempp.api.shapes.cube(h=0.1)
const_space = bempp.api.function_space(grid, "DUAL", 0)
lin_space = bempp.api.function_space(grid, "B-P", 1)

We would like to remark on the parameter B-P (barycentric-polynomial) in the code given
above for the function space definitions. Since the piecewise constant functions are defined
on the dual grid, we are working with the barycentric refinement of the original grid [2].
Hence, the piecewise linear functions on the primal grid also need to be defined over the
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Fig. 1. Left: The Laplace single layer operator applied to a constant function on the boundary of a cube.
Right: The Laplace hypersingular operator applied to the function on the left.

barycentric refinement (denoted by the parameter B-P) as the discretisation routines require
the same refinement level for the domain and dual to range space. Mathematically, the
standard space of continuous, piecewise linear functions over the primal grid and the space
B-P over the barycentric refinement are identical.
We now define the operator and the constant grid function. For the grid function the

coefficient vector is created via the NumPy routine ones, taking as input the number of
degrees of freedom in the space.

op = bempp.api.operators.boundary.laplace.single_layer(
const_space, lin_space, const_space)

fun = bempp.api.GridFunction(
const_space,
coefficients=np.ones(const_space.global_dof_count))

We can now multiply the operator with the function and plot the result.

result = op * fun
result.plot()

The output is the left cube shown in Figure 1. It is a continuous function in 𝐻1/2(Γ). The
right cube in Figure 1 shows the result of multiplying the Laplace hypersingular operator
defined by

op = bempp.api.operators.boundary.laplace.hypersingular(
lin_space, const_space, lin_space)

with the function on the left. Since the hypersingular operator maps into 𝐻−1/2(Γ), the
appropriate range space consists of piecewise constant functions, and the result of the discrete
operation correspondingly uses a space of piecewise constant functions.
Under the condition that the operations mathematically make sense and operators and

functions are correctly defined this mechanism always maps grid function objects into the
right spaces under the action of a boundary operator while hiding all the technicalities of
Galerkin discretisations.
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The internal implementation of the product of two operators is equally simple in this
framework. Given two operators op1 and op2. Internally, the weak_form() method of
the product op1 * op2 is defined as follows.

def weak_form():
return op1.weak_form() * op2.strong_form()

Correspondingly, the strong form of the product is implemented as:

def strong_form():
return op1.strong_form() * op2.strong_form()

Internally, the product of two discrete operators provides a matrix-vector routine that
successively applies the two operators to a given vector. If op1 and op2 implement caching
then an actual discretisation of a weak form is only performed once, and the product of the
two operators is performed with almost no overhead.

It is very easy to wrap standard iterative solvers to support this operator algebra. Suppose
we want to solve the product system (13). Using an operator algebra wrapper to any standard
GMRES (such as the one in SciPy [1]) the solution to the system (13) now takes the form

solution, info = gmres(W * V, W * (.5 * ident + K) * g)

with solution being a grid function that lives in the correct space of piecewise constant
functions. The definition of such a GMRES routine is as follows:

def gmres(A, b, ...):
from scipy.sparse import linalg
x, info = linalg.gmres(

A.weak_form(),
b.projections(A.dual_to_range),
...)

return GridFunction(A.domain, coefficients=x), info

The product algebra automatically converts W * V into a new object that provides the
correct space attributes and a weak_form method as defined above. Similarly, the right-
hand side b is evaluated into a vector with the projections method. The full Bempp
implementation provides among other options also a keyword attribute use_strong_form.
If this is set to true then inside the GMRES routine the solution is computed as

x, info = linalg.gmres(A.strong_form(), b.coefficients)

This corresponds to standard Riesz (or mass matrix) preconditioning and comes naturally
as part of this algebra. Note that we have left out of the description checks that the spaces
of the left and right hand side are compatible. In practice, this should be done by the code
as sanity check.

Finally, the weak form of the dual product 𝐵 ⊙𝐷 𝐴 can be be implemented as

def weak_form():
return B.strong_form().adjoint() * A.strong_form()

The range space and domain space of the dual product are the same as that of 𝐴 while the
dual space is the same as the domain space of 𝐵.
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3.4 A note on the performance of the operator algebra

The operator algebra described above relies on being able to perform fast mass matrix
LU decompositions and solves. In finite element methods LU decompositions with a mass
matrix can be as expensive as solves with a stiffness matrix. In BEM the situation is quite
different. Even with the utilisation of fast methods such as FMM (fast multipole method
[5]) or hierarchical matrices [6], the assembly and matrix-vector product of a boundary
operator is typically much more expensive than assembling a mass matrix and performing
an LU decomposition of it. Therefore, mass matrix operations can be essentially treated as
on-the-fly operations compared to the rest. One potential problem is the complexity of the
LU decomposition of a mass matrix over a surface function space on Γ. For banded systems
the complexity of Gaussian elimination scales like 𝒪(𝑛). However, a closed surface has a
higher element connectivity than a standard plane in 2d and we cannot expect a simple
𝒪(𝑛) scaling even with reordering. In practice though, this has made so far little difference
and we have used the SuperLU code provided by SciPy for the LU decomposition and
surface linear system solves on medium size BEM problems with hundreds of thousands of
surface elements without any noticeable performance issues, and we expect little performance
overhead even for very large problems with millions of unknowns as the FMM or hierarchical
matrix operations on the operators have much larger effective costs and significantly more
complex data structures to operate on.

4 THE FAST ASSEMBLY OF HYPERSINGULAR BOUNDARY OPERATORS

The weak form of the hypersingular boundary operator can, after integration by parts, be
represented as [7, 10]

𝑊𝑖𝑗 =
1

4π

∫︁
Γ

∫︁
Γ

ei𝑘|x−y|

|x− y|
⟨curlΓ𝜌𝑖(x), curlΓ𝜌𝑗(y)⟩2 d𝑠(y) d𝑠(x)

− 𝑘2

4π

∫︁
Γ

∫︁
Γ

ei𝑘|x−y|

|x− y|
𝜌𝑖(x)𝜌𝑗(y)⟨𝜈(x),𝜈(y)⟩2 d𝑠(y) d𝑠(x),

(14)

where the basis and test function 𝜌𝑗 and 𝜌𝑖 are basis functions in 𝑆1
ℎ. Both terms in (14) are

now weakly singular and can be numerically evaluated.
However, (14) motivates another way of assembling the hypersingular operator, which

turns out to be significantly more efficient in many cases. In both terms of (14), a single
layer kernel is appearing. We can use this and represent 𝑊 in the form

𝑊 =

3∑︁
𝑗=1

𝑃𝑇
𝑗 · 𝑉 · 𝑃𝑗 − 𝑘2

3∑︁
𝑗=1

𝑄𝑇
𝑗 · 𝑉 ·𝑄𝑗 , (15)

where we now only need to assemble a single layer boundary operator 𝑉 with smooth kernel
in a space of discontinuous elementwise linear functions, and the 𝑃𝑗 and 𝑄𝑗 are sparse
matrices. 𝑃𝑗 maps a continuous piecewise linear function to the 𝑗th component of its surface
curl and 𝑄𝑗 scales the basis functions with the contributions of 𝜈 in the 𝑗th component in
each element. If 𝑘 = 0 (Laplace case) the second term in (15) becomes zero and it would
even be sufficient to use a space of piecewise constant functions to represent 𝑉 .

This evaluation trick is well known and is suitable for discretising the hypersingular operator
with continuous, piecewise linear basis functions on flat triangles. The disadvantage is that
an explicit representation of the sparse matrices 𝑃𝑗 and 𝑄𝑗 is necessary. This representation
depends on the polynomial order and dof numbering of the space implementation.
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In the following we use the product algebra concepts to write the representation (14) in a
form that generalises to function spaces of arbitrary order on curved triangular elements
without requiring details of the dof ordering in the implementation. Given a finite dimensional
trial space Vtrial

ℎ with basis 𝜃1, . . . , 𝜃𝐿 and a corresponding test space Vtest
ℎ with basis

𝜉1, . . . , 𝜉𝐿′ we define the discrete sparse surface operators[︀
𝐶ℓ

]︀
𝑖𝑗
= ⟨[curlΓ𝜃𝑗 ]ℓ , 𝜉𝑖⟩Γ,[︀

𝑁 ℓ
]︀
𝑖𝑗
= ⟨𝜃𝑗 [𝜈]ℓ , 𝜉𝑖⟩Γ.

The operator 𝐶ℓ weakly maps a function 𝑓 to its elementwise ℓth surface curl component,
and the operator 𝑁 ℓ weakly multiplies a function 𝑓 with the ℓth component of the surface
normal direction.

We can now represent the hypersingular operator as

𝑊 =

3∑︁
𝑗=1

𝐶𝑗 ⊙𝐷 𝑉 ⊙ 𝐶𝑗 − 𝑘2
3∑︁

𝑗=1

𝑁 𝑗 ⊙𝐷 𝑉 ⊙𝑁 𝑗 . (16)

The dual multiplication ⊙𝐷 in (16) acts on the test functions and the right multiplication ⊙
acts on the trial functions. Let V𝑚,cont

ℎ be a globally continuous, elementwise polynomial

function space of order 𝑚 and denote by V𝑚,disc
ℎ the corresponding space of discontinuous

elementwise polynomial functions of order 𝑚. Then the operators in (14) have the following
domain, range and dual spaces.

Operator domain range dual

𝑊 V𝑚,cont
ℎ V𝑚,disc

ℎ V𝑚,cont
ℎ

𝑉 V𝑚,disc
ℎ V𝑚,disc

ℎ V𝑚,disc
ℎ

𝑁 𝑗 V𝑚,cont
ℎ V𝑚,disc

ℎ V𝑚,disc
ℎ

𝐶𝑗 V𝑚,cont
ℎ V𝑚,disc

ℎ V𝑚,disc
ℎ

We note that (14) only requires inverses of dual parings on V𝑚,disc
ℎ with itself as dual space

and not dual pairings between V𝑚,disc
ℎ and V𝑚,cont

ℎ which are not invertible. If 𝑘 = 0 we can
use spaces of order 𝑚− 1 for 𝑉 and the dual and range space of 𝐶 since then the second
sum in (15) vanishes and the first sum only contains products of derivatives of the basis

and trial functions. Also, we have chosen the discontinuous function space V𝑚,disc
ℎ as range

space of 𝑉 . This guarantees that the result in (16) has the correct range space.
In terms of standard matrix products (16) has the form

𝑊 =

3∑︁
𝑗=1

[︀
𝐶𝑗

]︀𝑇 ·𝑀−𝑇 · 𝑉 ·𝑀−1 · 𝐶𝑗 − 𝑘2
3∑︁

𝑗=1

[︀
𝑁 𝑗

]︀𝑇 ·𝑀−𝑇 · 𝑉 ·𝑀−1 ·𝑁 𝑗 ,

where𝑀 is the mass matrix associated with the space V𝑚,disc
ℎ of discontinuous basis functions.

Hence, 𝑀 is elementwise block-diagonal and therefore 𝑀−1 is too, and we can efficiently
directly compute 𝑀−1 as a sparse matrix. We can then accumulate the sparse matrix
products in the sum above to obtain (15) with 𝑃𝑗 = 𝑀−1 · 𝐶𝑗 and 𝑄𝑗 = 𝑀−1 · 𝑁 𝑗 . In
Bempp the whole implementation of the hypersingular operator can be written as follows.

D = ZeroBoundaryOperator(...)
for i in range(3):
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N (cont/discont)
Standard projection via single layer

time mem time mem time mem
258 / 1536 0.7 s 1.0 MiB 1.0 s 31 MiB 0.4 s 15.5 MiB
1026 / 6144 3.9 s 9.0 MiB 3.5 s 177 MiB 1.6 s 88 MiB
4098 / 24576 19.6 s 60.1 MiB 15.2 s 907 MiB 7.7 s 467 MiB
16386 / 98304 1.6 m 345 MiB 1.4 m 4.4 GiB 39.4 s 2.2 GiB
65538 / 393216 7.6 m 1.79 GiB 8.6 m 21.5 GiB 3.9 m 11.0 GiB

Fig. 2. Time and memory for the assembly of the hypersingular operator using the standard weak form
on the continuous space, discontinuous assembly with projection spaces or a single layer formulation. In
the latter two cases only the assembly time and memory of the boundary operator is given. Assembly
time and memory requirements for the sparse operators are negligble.

D += C[i].dual_product(V) * C[i]
D += -k**2 * N[i].dual_product(V) * N[i]

Due to efficient caching strategies, all operators, including the mass matrices and their
inverses, are computed only once. Hence, there is minimal overhead from using a high-level
expressive formulation.
In Figure 2, we compare times and memory requirements for the hierarchical matrix

assembly of the hypersingular boundary operator on the unit sphere with wavenumber
𝑘 = 1 using basis functions in 𝑆1

ℎ. The left column shows the standard assembly based on
(14) and 𝑆1

ℎ basis functions. The middle column shows results for assembling the operator
directly on a larger space of piecewise linear discontinuous functions using the weak form
(14) and then projecting down to basis functions in 𝑆1

ℎ, that is 𝑊 = 𝑃𝑇𝑊disc𝑃 for a sparse
matrix 𝑃 that maps from 𝑆1

ℎ to a space of piecewise linear discontinuous functions. This
assembly allows matrix compression directly on the elementwise basis functions instead of
only compressing on nodal basis functions after summing up the elementwise contributions.
However, in the case of the hypersingular operator, this leads to larger memory consumption
through the larger matrix size on the discontinuous space, but not faster assembly times.
The interesting case is the single layer formulation in (16). Even though the single layer
operator is assembled on the larger discontinuous space it compresses better since it is a
smoothing operator and therefore leads to around twice as fast assembly times. The price
is a larger memory size compared to the standard assembly. If this is not of concern then
the single layer based assembly is preferrable. Note that the evaluation of the matrix-vector
product using (16) requires six multiplications with the single layer operator. So if a large
number of matrix-vector products is needed this can become a bottleneck.

5 BLOCK OPERATOR SYSTEMS

Block operator systems occur naturally in boundary element computations since we are
typically dealing with pairs of corresponding Dirichlet and Neumann data whose relationship
is given by the Calderón projector shown in (4) for the interior problem and (7) for the
exterior problem. In this section we want to demonstrate some interesting computations
with the Calderón projector which can be very intuitively performed in the framework of
block operator extensions of the product algebra.
Within the Bempp framework, a blocked operator of given block dimension (𝑚,𝑛) is

defined as
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blocked_operator = bempp.api.BlockedOperator(m, n)

We can now assign individual operators to the blocked operator by e.g.

blocked_operator[0, 1] = laplace.single_layer(...)

Not every entry of a blocked operator needs to be assigned a boundary operator. Empty
positions are automatically treated as zero operators. However, we require the following
conditions before computations with blocked operators can be performed:

∙ There can be no empty rows or columns of the blocked operator.
∙ All operators in a given row must have the same range and dual_to_range space.
∙ All operators in a given column must have the same domain space.

These conditions are easily checked while assigning components to a blocked operator.
The weak form of a blocked operator is obtained as

discrete_blocked_operator = blocked_operator.weak_form()

This returns an operator which performs a matrix-vector product by splitting up the input
vector into its components with respect to the columns of the blocked operator, performs
multiplications with the weak forms of the individual components, and then assembles the
result vector back together again.
The interesting case is the definition of a strong form. Naively, we could just take the

strong forms of the individual component operators. However, since each strong form involves
the solution of a linear system with a mass matrix we want to avoid this. Instead, we multiply
the discrete weak form of the operator from the left with a block diagonal matrix whose
block diagonal components contain the inverse mass matrices that map from the dual space
in the corresponding row to the range space. This works due to the compatibility condition
that all test and range spaces within a row must be identical.

5.1 Stable discretisations of Calderón projectors

With the concept of a block operator we now have a simple framework to work with Calderón
projectors 𝒞± =

(︀
1
2 Id∓ A

)︀
with A defined as in (5). For the sake of simplicity in the following

we use the Calderón projector 𝒞+ for the exterior problem. The interior Calderón projector
𝒞– is treated in the same way. Remember that both operators are defined on the product
space 𝐻1/2(Γ)×𝐻−1/2(Γ)

Two properties are fundamental to Calderón projectors. First, (𝒞+)
2
= 𝒞+; and second,

if 𝑈 =
[︀
𝛾+
0 𝑢, 𝛾+

1 𝑢
]︀𝑇

is the Cauchy data of an exterior Helmholtz solution 𝑢 satisfying the

Sommerfeld radiation condition, it holds that 𝑈 = 𝒞+𝑈 , or equivalently 𝒞–𝑈 = 0.
Based on the product algebra framework introduced in this paper we can easily represent

these properties on a discrete level to obtain a numerical Calderón projector up to the
discretisation error.
As an example, we consider the Calderón projector on the unit cube with wavenumber

𝑘 = 2. Assembling the projector within the Bempp product operator framework is simple,
and corresponding functions are already provided.

k = 2
from bempp.api.operators.boundary.sparse \

import multitrace_identity
from bempp.api.operators.boundary.helmholtz \
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import multitrace_operator
calderon = .5 * multitrace_identity(grid, spaces="dual") \

- multitrace_operator(grid, k, spaces="dual")

In this code snippet, the option spaces="dual" automatically discretises the Calderón
projector using stable dual pairings of continuous, piecewise linear spaces on the primal grid,
and piecewise constant functions on the dual grid.

To demonstrate the action of the Calderón projector to a pair of non-compatible Cauchy
data we define two grid functions, both of which are constant one on the boundary.

f1 = bempp.api.GridFunction.from_ones(
calderon.domain_spaces[0])

f2 = bempp.api.GridFunction.from_ones(
calderon.domain_spaces[1])

The two functions are defined on the pair of domain spaces discretising the product space
𝐻1/2(Γ) ×𝐻−1/2(Γ). We can now apply the Calderón projector to this pair of spaces to
compute new grid functions which form a numerically compatible pair of Cauchy data for
an exterior Helmholtz solution. The code snippet for this operation is given by

[u1, v1] = calderon * [f1, f2]

The grid functions u1 and v1 again live in the spaces of piecewise continuous and piecewise
constant functions, respectively. We now apply the Calderón projector again to obtain

[u2, v2] = calderon * [u1, v1]

The grid functions u1 and u2, respectively v1 and v2 should only differ in the order of the
discretisation error. We can easily check this.

error_dirichlet = (u2-u1).l2_norm() / u2.l2_norm()
error_neumann = (v2-v1).l2_norm() / v2.l2_norm()

For the corresponding values we obtain 1.2×10−4 and 8.0×10−4. It is interesting to consider
the singular values and eigenvalues of the discrete strong form of the Calderón projector.
We can compute them easily as follows.

from scipy.linalg import svdvals, eigvals
calderon_dense = bempp.api.as_matrix(calderon.strong_form())
sing_vals = svdvals(calderon_dense)
eig_vals = eigvals(calderon_dense)

The grid has 736 nodes. This means that the discrete basis for the possible Dirichlet data
has dimension 736. For each Dirichlet basis function there is a unique associated Neumann
function via the Dirichlet-to-Neumann map. Hence, we expect the range of the Calderón
projector to be of dimension 736 with all other singular values being close to the discretisation
error. Correspondingly, for the eigenvalues we expect 736 eigenvalues close to 1 with all
other eigenvalues being close to 0. This is indeed what happens as shown in Figure 3. In the
top plot we show the singular values of the discrete Calderón projector and in the right plot
the eigenvalues. While the eigenvalues cluster around 1 and 0 the singular values show a
significant drop-off between 𝜎736 ≈ 1.04 and 𝜎737 ≈ 4.9× 10−3, which corresponds to the
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approximation error as the accuracy of the hierarchical matrix approximation was chosen to
be 10−3.
Finally, we would like to stress that while the eigenvalues of the discrete strong form

are approximations to the eigenvalues of the continuous operator, the singular values of
the discrete strong form are generally not. Given any operator A acting on a Hilbert space
ℋ the Galerkin approximation of the continuous eigenvalue problem A𝜑 = 𝜆𝜑 is given as
𝐴𝑥 = 𝜆𝑀A𝑥, where 𝑀A is the mass matrix between the dual space and ℋ with respect to
the chosen dual form. If 𝑀A is invertible this is equivalent to 𝑀−1

A 𝐴𝑥 = 𝜆𝑥 or 𝐴𝑆𝑥 = 𝜆𝑥.
The situation is more complicated for the singular values. For simplicity consider a compact
operator (e.g. the single layer boundary operator) acting on 𝐿2(Γ). We have that

‖𝐴‖𝐿2(Γ) = sup
𝜑∈𝐿2(Γ)

‖𝐴𝜑‖𝐿2(Γ)

‖𝜑‖𝐿2(Γ)
.

Let 𝑀 = 𝐶𝑇𝐶 be the Cholesky decomposition of the 𝐿2(Γ) mass matrix 𝑀 in a given
discrete basis and 𝐴 the Galerkin approximation in the same basis. Since ‖𝜑‖𝐿2(Γ) = ‖𝐶x‖2
for a function 𝜑 living in the discrete subspace of 𝐿2(Γ) with given coefficient vector x it
follows that

‖𝐴‖𝐿2(Γ) ≈ max
x̸=0

‖𝐶𝑀−1𝐴x‖2
‖𝐶x‖2

= ‖𝐶−𝑇𝐴𝐶−1‖2,

which is generally not the same as ‖𝑀−1𝐴‖2. So while the strong form correctly represents
spectral information it does not recover norm or similar singular value based approximations.

5.2 Calderón preconditioning for acoustic transmission problems

As a final application we consider the Calderón preconditioned formulation of the following
acoustic transmission problem.

−∆𝑢+ − 𝑘2𝑢+ = 0, in Ω+,

−∆𝑢– − 𝑛2𝑘2𝑢– = 0, in Ω,

𝛾–
0𝑢

– = 𝛾+
0 𝑢+ + 𝛾+

0 𝑢inc, on Γ,

𝛾–
1𝑢

– = 𝛾+
1 𝑢+ + 𝛾+

1 𝑢inc, on Γ,

lim
|x|→∞

|x|
(︂

𝜕

𝜕|x|
𝑢+(x)− i𝑘𝑢+(x)

)︂
= 0. (17)

Here, 𝑛 = 𝑐+/𝑐− is the ratio of the speed of sound 𝑐+ in the surrounding medium to the speed
of sound 𝑐− in the interior medium. The incident field is denoted by 𝑢inc. The formulation
that we present is based on [4]. A generalized framework for scattering through composites

is discussed in [3]. We denote by 𝑉 − :=
[︀
𝛾−
0 𝑢− 𝛾−

1 𝑢−]︀𝑇 , 𝑉 + :=
[︀
𝛾+
0 𝑢+ 𝛾+

1 𝑢+
]︀𝑇

, and

𝑉 inc :=
[︀
𝛾+
0 𝑢inc 𝛾+

1 𝑢inc
]︀𝑇

the Cauchy data of 𝑢−, 𝑢+ and 𝑢inc. Let A+ be the multitrace

operator associated with the wavenumber 𝑘+ := 𝑘 and A− the multitrace operator associated
with 𝑘− := 𝑛𝑘 as defined in (5). From the Calderón projector it now follows that(︀

1
2 Id+ A−)︀𝑉 − = 𝑉 −(︀
1
2 Id− A+

)︀
𝑉 + = 𝑉 + (18)

Together with the interface condition 𝑉 − = 𝑉 ++𝑉 inc we can derive from these relationships
the formulation (︀

A− + A+
)︀
𝑉 + =

(︀
1
2 Id− A−)︀𝑉 inc. (19)
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Fig. 3. Top: Singular values of the discrete strong form of the Calderón projector on the unit cube.
Bottom: Eigenvalues of the discrete strong form.

This formulation is well defined for all wavenumbers 𝑘 > 0 [4]. Moreover, it admits a simple
preconditioning strategy [3] based on properties of the Calderón projector as follows. We
note that 𝐴+ is a compact perturbation of 𝐴− [11]. We hence obtain(︀

A− + A+
)︀2

=
(︀
A− + compact

)︀2
= 1

4 Id+ compact.

We can therefore precondition (19) by squaring the left-hand side to arrive at(︀
A− + A+

)︀2
𝑉 + =

(︀
A− + A+

)︀ (︀
1
2 Id− A−)︀𝑉 inc. (20)

With the block operator algebra in place in Bempp the main code snippet becomes

A_minus = multitrace_operator(grid, n * k, spaces="dual")
A_plus = multitrace_operator(grid, k, spaces="dual")
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Fig. 4. Squared acoustic pressure distribution of a wave travelling through a piecewise homogeneous
medium.

ident = multitrace_identity(grid, spaces="dual")
op = A_minus + A_plus
rhs_op = op * (.5 * ident - A_minus)
sol, info = bempp.linalg.gmres(op * op, rhs_op * v_inc,

use_strong_form=True)

As in the single-operator case we can intuitively write the underlying equations and solve
them. All mass matrix transformations are being taken care off automatically. An example
is shown in Figure 4. It demonstrates a two-dimensional slice at height 0.5 of a plane wave
travelling through the unit cube. In this example 𝑘 = 10 and 𝑛 = 0.8. The system was solved
in 7 GMRES iterations to a tolerance of 10−5.

6 CONCLUSIONS

In this paper we have demonstrated how a Galerkin based product algebra can be defined
and implemented. The underlying idea is very simple. Instead of an operator being defined
just trough a domain and a test space we define it by a triplet of a domain space, range
space, and dual to range (test) space. This is more natural in terms of the underlying
mathematical description and allows the software implementation of an automatic Galerkin
operator product algebra.
We have demonstrated the power of this algebra using three examples, the efficient

evaluation of hypersingular boundary operators by single-layer operators, the computation of
the singular values and eigenvalues of Calderón projectors, and the Calderón preconditioned
solution of an acoustic transmission problem.
As long as an efficient LU decomposition of the involved mass matrices is possible the

product algebra can be implemented with little overhead. Multiple LU decompositions of
the same mass matrix can be easily avoided through caching.
In this paper we focused on Galerkin discretizations of boundary integral equations.

Naturally, operator algebras are equally applicable to Galerkin discretizations of partial
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differential equations. The main difference here is that for large-scale three dimensional
problems an efficient LU decomposition of mass matrices may not always be possible.
Finally, we would like to stress that the underlying principle of this paper and its

implementation in Bempp is to allow the user of software libraries to work as closely to the
mathematical formulation as possible. Ideally, a user treats operators as continuous objects
and lets the software do the rest while the library ensures mathematical correctness. The
framework proposed in this paper and implemented in Bempp provides a step towards this
goal.
While in this paper we have focused on acoustic problems the extension to Maxwell

problems is straight forward and has been used in [12].
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