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a b s t r a c t

In recent years there have been tremendous advances in the theoretical understanding of
boundary integral equations for Maxwell problems. In particular, stable dual pairings of
discretisation spaces have been developed that allow robust formulations of the precon-
ditioned electric field, magnetic field and combined field integral equations. Within the
BEM++ boundary element library we have developed implementations of these frame-
works that allow an intuitive formulation of the typical Maxwell boundary integral for-
mulations within a few lines of code. The basis for these developments is an efficient
and robust implementation of Calderón identities together with a product algebra that
hides and automatesmost technicalities involved in assemblingGalerkin boundary integral
equations. In this paper we demonstrate this framework and use it to derive very simple
and robust software formulations of the standard preconditioned electric field, magnetic
field and regularised combined field integral equations for Maxwell.
© 2017 The Author(s). Published by Elsevier Ltd. This is an open access article under the

CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

The numerical simulation of electromagnetic wave scattering poses significant theoretical and computational challenges.
Much effort in recent years has gone into the development of fast and robust boundary integral equation formulations to
simulate a range of phenomena from the design and performance of antennas to radar scattering from largemetallic objects.

While there have been a range of important theoretical advances in recent years for the development of robust
preconditioned boundary integral formulations for Maxwell, the computational implementation remains a challenge. At
University College London, as part of the BEM++ project [1] we have developed a number of easy to use Python-based open-
source tools to explore and solve Maxwell problems based on preconditioned electric field (EFIE), magnetic field (MFIE) and
combined field (CFIE) integral equation formulations. In this paper, we give an overview of these developments, present
simple example codes and discuss the underlying implementation. The goal is to make advanced integral equation solvers
for Maxwell available to non-specialised users without requiring significant knowledge in the design and implementation
of these methods.

In particular, we consider the following formulation of electromagnetic scattering from a perfectly conducting object. Let
Ω−

⊂ R3 be a bounded domain with boundary Γ and denote by Ω+
= R3

\ Ω− its complement. Let ν be the exterior
normal vector on Γ pointing into Ω+ as shown in Fig. 1.
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Fig. 1. Time-harmonic scattering from a perfect conductor.

Denote by einc an incident field. We are looking for the solution etot = einc + escat of the exterior scattering problem,
satisfying

curl curl etot − k2etot = 0 in Ω+, (1a)
etot × ν = 0 on Γ , (1b)

lim
|x|→∞

|x|
(
curl escat ×

x
|x|

− ikescat
)

= 0 as |x| → ∞. (1c)

Here, k = ω
√

ϵ0µ0 denotes the wavenumber of the problem, with ω denoting the frequency and ϵ0 and µ0 the electric
permeability and magnetic permittivity in vacuum. Frequently, the incident field is a plane wave given by einc = peikx·d ,
where p is a non-zero vector representing the polarisation of the wave and d is a unit vector perpendicular to p that gives
the direction of the plane wave.

In Section 2, we give a short overview of the main concepts of the BEM++ boundary element library with an emphasis on
its operator and grid function algebra.

When discretising these equations, the finite dimensional function spaces must be chosen carefully in order to give well-
conditioned systems of equations. In Section 3, we present an overview of the function spaces forMaxwell boundary integral
operators, and the various discretisations of these spaces. The emphasis is on the presentation of stable dual pairings between
so-called Rao–Wilton–Glisson (RWG) [2] spaces, and Buffa–Christiansen (BC) spaces [3].

In Section 4, we present the standard electric and magnetic field boundary integral operators and the resulting Calderón
projector. The concept of the Calderón projector is fundamental to this paper. We describe the function spaces used in
assembling the Calderón projector and numerically demonstrate its properties using small BEM++ code snippets.

In Sections 5–7, we then demonstrate the Calderón preconditioned EFIE, MFIE and regularised CFIE and their BEM++ im-
plementations. Interesting non-trivial domains will be used to demonstrate and compare their properties.

The use of stable RWG/BC pairings, on which this paper is based, is well known in the electromagnetics community (see
e.g. [4–6]). The emphasis in this paper is on a simple high-level software representation that is mathematically correct and
robust, but hides the underlying complexities to provide a simple framework in which to solve electromagnetic scattering
problems.

2. A Maxwell introduction to BEM++

BEM++ (www.bempp.org) is an open-source library for the Galerkin discretisation and solution of boundary integral
equations in electrostatics, acoustics and computational electromagnetics. The library supports dense discretisation and hi-
erarchical matrix assembly. The interface of the library is written in Pythonwith fast kernel assembly routines implemented
in C++.

In this section we give a brief overview of BEM++ using the example of Maxwell boundary integral operators. We skip
mathematical details: these will be discussed in the subsequent sections. A particular focus in this section is on the operator
concept of BEM++, which will allow us to elegantly describe the various types of integral equations in what follows.

BEM++ has a range of features to define or import triangular surface grids consisting of flat elements. To define a function
space over a grid we use the function_space command. For example, a simple space consisting of RWG functions (see
Section 3 for details) is defined by

import bempp . api
grid = . . .
rwg_space = bempp . api . function_space ( grid , 'RWG' , 0)

The third parameter in the function_space command is the degree of the space. For Maxwell only lowest order functions
are supported.

With the definition of a function space we can now discretise functions over a given space into a GridFunction object.
The following code computes a discretisation of the tangential trace of a plane wave Maxwell solution u(x) = peikd·x, where
p is the polarisation vector.

http://www.bempp.org
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import numpy as np
p = np . array ( [ . . . ] )
d = np . array ( [ . . . ] )
k = . . .
def plane_wave (x ) :

return np . exp(1 j ∗ np . dot (d , x ) ) ∗ p

def tangent ia l_ t race (x , n , domain_index , resu l t ) :
resu l t [ : ] = np . cross ( plane_wave (x ) , n , axis =0)

grid_fun = bempp . api . GridFunction (
space=rwg_space , fun= tangent ia l_ t race )

The tangential_trace function defines the tangential trace of the plane wave in dependence of a given normal vector
n, which is passed in during the discretisation phase. The GridFunction object by default performs an L2 projection onto
the space rwg_space. Oblique projections with a different test space are also supported by specifying the dual_space
argument in the constructor of GridFunction.

We now define an operator acting on grid functions. An electric field integral operator is defined on the space
H−1/2

× (divΓ , Γ ) of surface-div-conforming functions. For the discretisation we need test functions from the space of surface-
curl-conforming functions H−1/2

× (curlΓ , Γ ). Here, we choose RBC functions, which are explained in Section 3.

from bempp . api . operators . boundary import \
maxwell

rbc_space = bempp . api . function_space ( grid , 'RBC ' , 0)
op = maxwell . e l e c t r i c _ f i e l d (

rwg_space , rwg_space , rbc_space , k )

Each boundary operator in BEM++ takes three parameters, a domain space, a range space, and a dual space to the range space.
For a Galerkin discretisation the range space is not required. However, we use it to implement a Galerkin based operator
algebra. This algebra allows us for example to write

resu l t = op ∗ grid_fun

The result is a grid function, which is defined over the range space of the operator. Internally, this is implemented by
multiplying the weak form of the operator with the coefficient vector of the grid function, and then solving with the mass
matrix between the dual space and the range space to map the result back into a coefficient vector of the range space. This
mass matrix solve in practice is only performed if a method requires the coefficient vector of the result grid function,
so that the above code snippet is even well-defined if there is no stable mapping from the dual space to the range space.
However, then only a representation of the grid function in the dual space is available.

By extending this mechanism to operators, the concept of products of operators is also defined in BEM++ . Given two
operators op1 and op2 in BEM++ with compatible spaces, their product is a new operator that is implicitly defined through
first the application of op2, followed by a mass matrix solve to map the result into the domain space of op1, followed by the
application of op1.

The high-level concept of operators and grid functions extends everywhere into the library. For example, to solve the
indirect electric field integral equation (EFIE) with the above plane wave incident field we can write

so l = bempp . api . l i n a l g . lu (op , grid_fun )

to solve the associated EFIE problem using a dense LU decomposition. The object sol is a grid function that lives in the
domain space of op and is a grid function that satisfies grid_fun == op * sol up to numerical errors. Naturally, for larger
problems we are interested in iterative solvers and corresponding interfaces to GMRES and CG are also provided.

Wewill use this operator concept extensively in this paper to formulate the different types ofMaxwell integral equations.
More details of the abstract implementation of operator algebras in BEM++ can be found in [7].

3. Function spaces

In this section we review the necessary function space definitions for boundary integral formulations of the electromag-
netic scattering problem (1). In what follows, we assume that Γ consists of a finite number of smooth faces that meet at
non-degenerate edges. This is a reasonable assumption from the point of view of boundary element methods, as we will
consider discrete problems on meshed surfaces.

The fundamental difficulty lies in the correct description of trace spaces onΓ for solutions of (1) [8–12]. In this section,we
summarise without proof some of the results of these papers, as they form the foundations for the operator definitions and
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stable implementations presented in later sections. Throughout, we will present small code snippets to demonstrate how to
instantiate the corresponding spaces in BEM++ . More details and references can also be found in the overview paper [13]
and in [14].

Throughout this paper, we adopt the convention of using bold and non-bold letters for spaces of vector- and scalar-valued
functions, respectively.Whenever wewrite the subscript loc it is understood to only be used for the unbounded domainΩ+.
For definitions of Sobolev spaces of scalar-valued functions, we refer to [15, chapter 3].

Let op be one of curl, curl2 or div. Denote byH loc(op, Ω±) the function space defined asH loc(op, Ω±) := {u ∈ L2
loc(Ω

±) :

op u ∈ L2
loc(Ω

±)} (for div, the final L2
loc(Ω

±) should be replaced by the scalar space L2loc(Ω
±)). To define the necessary

function spaces on the surface Γ , we first define the tangential (t) and Neumann (N) traces on Γ . These are defined, for
p ∈ H loc(curl, Ω±) and q ∈ H loc(curl2, Ω±), by

γ±

t p(x) := lim
Ω±∋x′→x∈Γ

p(x′) × ν(x), γ±

N q(x) :=
1
ik
γ±

t curl q(x), (2)

where the superscripts − and + denote the interior and exterior traces, respectively. Note that in our definition γ±

N contains
an additional factor of i, which does not appear in [13]. The interpretation is that if we normalise the magnetic permittivity
and electric permeability to 1, this definition of γ±

N is the tangential trace of the magnetic field data.
In what follows we need the average {·}Γ , and jump, [·]Γ of these traces, defined as

{γ∗}Γ f :=
1
2
(γ∗

+f + γ∗
−f ), [γ∗]Γ f := γ∗

+f − γ∗
−f . (3)

Let L2
t (Γ ), defined by

L2
t (Γ ) := {u ∈ L2(Γ ) : u · ν = 0}, (4)

be the space of square integrable tangential functions. We define the tangential trace space, H1/2
× (Γ ), as in [13, definition 1]

by

H1/2
× (Γ ) := γt

−(H1(Ω−)) =
{
γt

−u : u ∈ H1(Ω−)
}
. (5)

The dual of this space with respect to the antisymmetric product,

⟨a, b⟩τ :=

∫
Γ

a · (ν × b), for a, b ∈ L2
t (Γ ). (6)

is denoted by H−1/2
× (Γ ).

Due to the assumption that Γ consists of a finite number of smooth faces, we may let Γ =
⋃m

j=0Γ
j, where Γ 0, . . . , Γ m

are smooth. We define the scalar surface divergence of γ±

t u, for u ∈ H loc(curl, Ω±), by

divΓ (γt±u) := γ±

ν (curl u), (7)

where the normal trace, γ±
ν , is defined for p ∈ H loc(div, Ω±) by

γ±

ν p := lim
Ω±∋x′→x∈Γ

p(x′) · ν(x). (8)

For a function u ∈ γt
−(C∞(Ω−)), this can be calculated using

divΓ u :=

{
divjuj on Γ j

(uj
· νij + ui

· νji)δij on Γ j ∩ Γ i,
(9)

where uj is the restriction of u to the faceΓ j, νij is the outward pointing tangential normal toΓ i restricted to the edgeΓ i∩Γ j,
divj is the two dimensional divergence computed on the face Γ i, and δij is the Dirac delta distribution with support on the
edgeΓ i∩Γ j. By density, this definition can be extended tou ∈ H−1/2

× (Γ ).Wenowdefine the space of surface-div-conforming
functions by

H−1/2
× (divΓ , Γ ) := {µ ∈ H−1/2

× (Γ ) : divΓµ ∈ H−1/2(Γ )}. (10)

The scalar surface curl may be defined, for u ∈ H−1/2
× (Γ ), by

curlΓ (u) := divΓ (u × ν), (11)

and the space of surface-curl-conforming functions by

H−1/2
× (curlΓ , Γ ) := {ν × µ : µ ∈ H−1/2

× (divΓ , Γ )}. (12)

By restricting their domains as in the following theorem, we obtain continuous and surjective traces.
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Fig. 2. Two adjacent triangles on which Raviart–Thomas (RT) and Nédélec (NC) basis functions are defined.

Theorem 1. The traces

γ±

t : H loc(curl, Ω±) → H−1/2
× (divΓ , Γ ) (13)

and γ±

N : H loc(curl2, Ω±) → H−1/2
× (divΓ , Γ ) (14)

are continuous and surjective.

Proof. See [11, Theorem 4.1] and [13, Lemma 3]. □

The antisymmetric dual form defined in (6) is intimately connected with the space H−1/2
× (divΓ , Γ ). In [11, Lemma 5.6] it

is shown that the space H−1/2
× (divΓ , Γ ) is self-dual with respect to this antisymmetric dual form. Another interpretation of

this dual form is as the standard L2 dual between the spacesH−1/2
× (divΓ , Γ ) andH−1/2

× (curlΓ , Γ ) sinceψ ∈ H−1/2
× (curlΓ , Γ )

if and only if ψ = ν × ξ for some ξ ∈ H−1/2
× (divΓ , Γ ).

Commonly used discretisations of these two spaces are Raviart–Thomas (RT) div-conforming [16] and Nédélec (NC) curl-
conforming [17] basis functions. For the ith edge in a mesh, between two triangles T +

i and T−

i , the order 0 RT basis function
is defined by

RTi(r) :=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1

2A+
i
(r − p+

i ) if r ∈ T +
i

−
1

2A−

i
(r − p−

i ) if r ∈ T−

i

0 otherwise,

(15)

where A+
i and A−

i are the areas of T +
i and T−

i , and p−

i and p+
i are the corners of T +

i and T−

i not on the shared edge, as shown in
Fig. 2. For the same edge, the order 0 NC basis function may be defined by

NCi(r) := ν × RTi(r). (16)

Example RT andNC order 0 basis functions are shown in Fig. 3. In BEM++, RT andNC spacesmay be createdwith the following
lines of Python.

rt_space = bempp . api . function_space ( grid , "RT" , 0)
nc_space = bempp . api . function_space ( grid , "NC" , 0)

The RT basis functions are closely related to the Rao–Wilton–Glisson (RWG) basis functions presented in [2]. These are
defined by

RWGi(r) := liRTi(r) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
li

2A+
i
(r − p+

i ) if r ∈ T +
i

−
li

2A−

i
(r − p−

i ) if r ∈ T−

i

0 otherwise,

(17)

where li is the length of the shared edge, and all other terms are as above. We define the scaled curl-conforming dual basis
functions of the RWG functions as

SNCi(r) := liNCi(r) = ν × RWGi(r). (18)

In BEM++, RWG and SNC spaces may be created with the following lines of Python.
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Fig. 3. A div-conforming Raviart–Thomas (left) and curl-conforming Nédélec (right) order 0 basis functions.

Fig. 4. The coefficients used to define a BC basis function in terms of RWG functions on the barycentrically refined grid.

rwg_space = bempp . api . function_space ( grid , "RWG" , 0)
snc_space = bempp . api . function_space ( grid , "SNC" , 0)

An overview of other bases that can be used to discretise H−1/2
× (divΓ , Γ ) and H−1/2

× (curlΓ , Γ ), as well as other spaces,
can be found in [18].

3.1. Buffa–Christiansen spaces

The RT basis functions have a subspace that is quasi-orthogonal to the space of curl-conforming Nédélec functions [19,
section 3.1]. Due to this, the antisymmetric bilinear form, as defined in (6), on the discrete RT space is not inf–sup stable. The
motivation for Buffa–Christiansen (BC) basis functions is to find a space of functions that are div-conforming but behave like
curl-conforming functions, as this will recover inf–sup stability.

To define such a basis, we first take the space of div-conforming RWG functions on a barycentric refinement of the original
grid. Given the ith edge of the original coarse grid, the associated BC function BCi is now defined as a linear combination of
these RWG functions on the barycentric refinement such that this linear combination is approximately tangentially (and
therefore curl-) conforming across the ith edge. A typical BC basis function is defined in Fig. 4 and shown in Fig. 5. The full
definition of BC functions is given in [3] in which also the following inf–sup stability result is shown. This result implies the
stability of the Gram matrix between BC functions and RWG functions with respect to the dual pairing in (6).

inf
u∈RWG

sup
v∈BC

⟨u, v⟩τ

∥u∥
−

1
2 ,div

∥v∥
−

1
2 ,div

γt
1
C

. (19)
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Fig. 5. A div-conforming and quasicurl-conforming Buffa–Christiansen basis function, defined using RWG functions on barycentrically refined triangles.

Fig. 6. Computing the condition number of the RWG/SNC and the RWG/RBC mass matrix in BEM++ . The values computed are 7.7 × 1017 and 3.60.

For a BC basis function, BCi, we may also define the rotated Buffa–Christiansen (RBC) basis function, in an analogous way
to (16), by

RBCi(r) := ν × BCi(r). (20)

In BEM++, BC and RBC spaces may be created with the following lines of Python.

bc_space = bempp . api . function_space ( grid , "BC" , 0)
rbc_space = bempp . api . function_space ( grid , "RBC" , 0)

We can use BEM++ to compare the stability of dual pairings of RWG spaces with SNC and RBC spaces. The code in Fig. 6
computes the condition number of mass matrices on a regular sphere grid generated from the RWG/SNC pairing ( id1) and
the RWG/RBC pairing ( id2).

For the condition number of id1 the code computes a value of 7.7×1017 and for the condition number of id2 it computes
a value of 3.60. We note that in the definitions of the spaces in Fig. 6 we have used the identifiers B-RWG and B-SNC instead
of RWG and SNC. The reason is that the RBC spaces are defined over barycentric refinements of the grid. So we need to tell
also the other space definitions to internally use barycentric refinements of the grid (even though the actual spaces live on
the coarse grid), which is done by prepending B- in the definitions.
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4. Operators

BEM++ provides the magnetic and electric field domain potential and boundary operators.
First, we define the electric andmagnetic potential operators (see [13]), E,H : H−1/2

× (divΓ , Γ ) → H loc(curl2, Ω+
∪Ω−),

by

E(p)(x) := ik
∫

Γ

p(y)G(x, y) dy −
1
ik

∇x

∫
Γ

divΓ p(y)G(x, y) dy, (21)

H(p)(x) := curlx
∫

Γ

p(y)G(x, y) dy, (22)

where G(x, y) =
eik|x−y|

4π |x−y|
is the Green’s function of a three-dimensional Helmholtz problem.

The definition of the electric potential operator, E, used here differs from that used in [13] by a factor of i, corresponding
to the modified definition of γ±

N .
With the electric and magnetic field operators we obtain the following representation formula.

Theorem 2. If e ∈ H loc(curl2, Ω−
∪ Ω+) is a solution of (1a), then

e(x) = −H([γt]Γ e)(x) − E([γN]Γ e)(x). (23)

Proof. See [13, section 4]. □

Once the jumps of the traces of the solution are known or estimated on Γ , the representation formula (23) can be used to
find the solution at points in Ω±. In BEM++ the electric and magnetic domain potential operators are available to evaluate
this representation formula.

from bempp . api . operators . potent ia l import maxwell
eval_points = . . .
e_pot = maxwell . e l e c t r i c _ f i e l d (

magnetic_space , eval_points , k )
m_pot = maxwell . magnetic_f ield (

e lectr ic_space , eval_points , k )
f i e l d = e_pot ∗ magnetic_jump m_pot ∗ electric_jump

The domain is represented by a 3 × N array of N points away from the boundary Γ . By default the potential operators
are assembled usingH-matrices and then for given trace data evaluated by a fastH-matrix/vector product [20].

Taking traces of the electric and magnetic field potential operators we arrive at the electric boundary operator, E :

H−1/2
× (divΓ , Γ ) → H−1/2

× (divΓ , Γ ), and the magnetic boundary operator, H : H−1/2
× (divΓ , Γ ) → H−1/2

× (divΓ , Γ ). These
are defined by

E := {γt}Γ E, H := {γt}Γ H. (24)

Additionally, we define the identity operator, Id, thatmaps every function to itself. Because of the symmetry between electric
and magnetic fields, the average Neumann traces can be written in terms of E and H as follows:

{γN}Γ E = H, {γN}Γ H = −E. (25)

The following jump conditions can be derived [13, Theorem 7].

[γt]Γ E = [γN]Γ H = 0, [γN]Γ E = [γt]Γ H = −Id. (26)

Combining (24)–(26) gives

γt
+E = E, γN

+E = −
1
2 Id + H, (27)

γt
+H = −

1
2 Id + H, γN

+H = −E, (28)

for the exterior traces and

γt
−E = E, γN

−E =
1
2 Id + H, (29)

γt
−H =

1
2 Id + H, γN

−H = −E, (30)

for the interior traces.
For given domain, range_ and dual_to_range spaces the electric andmagnetic field boundary operators in BEM++ are

defined by
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Table 1
Spaces to use when discretising the multitrace operator, A.

Matrix Operator Domain Range Dual to range

H1 Magnetic RWG RWG RBC
E1 Electric BC RWG RBC
E2 Electric RWG BC SNC
H2 Magnetic BC BC SNC

from bempp . api . operators . boundary import maxwell
e f i e = maxwell . e l e c t r i c _ f i e l d (

domain , range_ , dual_to_range , k )
mfie = maxwell . magnetic_f ield (

domain , range_ , dual_to_range , k )

To obtain standard RWG discretisations of these operators we choose RWG as domain and range space, and SNC as dual
to range space. It is important to note that internally we use the formulations of the weak forms of these operators given
in [13], which are based on the antisymmetric dual form ⟨·, ·⟩τ and not on the standard L2 dual form. Hence, the dual spaces
are the non-rotated spaces RWG and BC for the discretisation, and when SNC is passed as dual to range space, it is internally
interpreted as an RWG space for the generation of the discrete weak form. The rotated spaces SNC and RBC play a role in the
operator algebra used to form the mass matrices for the ⟨·, ·⟩τ dual form by means of the standard L2 dual form.

4.1. The Calderón projector and its discretisation

Using the boundary operators in the previous section, we define the multitrace operator A by

A :=

[
H E

−E H

]
. (31)

We then define the exterior Calderón projector, C+, as follows:

C+
:=

1
2 Id − A =

[ 1
2 Id − H −E

E 1
2 Id − H

]
. (32)

It is well known [13] that, given any arbitrary trace data (a, b) ∈ H−1/2
× (divΓ , Γ )2 the product

C+

[
a
b

]
defines a compatible pair of Cauchy data, and[

C+
]2 [

a
b

]
= C+

[
a
b

]
from which we obtain

[
C+

]2
= C+. Using this identity and the representation C+

=
1
2 Id − A we obtain

A2
=

1
4 Id. (33)

This relationship is crucial for preconditioning numerical methods based on the Calderón projector and any discretisation
scheme should preserve this property.

Denote by

A :=

[
H1 E1
−E2 H2

]
, (34)

the discretisation of the operator A. Here, E1 and E2 are discretisations of electric field operators and H1 and H2 are
discretisations of magnetic field operators.

We want to numerically satisfy the relationship in (33). Hence, we require that[
H1 E1
−E2 H2

][
M−1

1
M−1

2

][
H1 E1
−E2 H2

]
≈

1
4

[
M1

M2

]
,

where M1 and M2 are the corresponding mass matrices between the dual spaces and range spaces of the operators in the
first line, and in the second line, respectively.

In order to satisfy the above relationship it is crucial that M1 and M2 are well-conditioned mass matrices. A choice of
spaces for the operators that achieves this goal, is shown in Table 1. These choices of spaces lead to all mass matrices
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Fig. 7. Applying the Calderón projector to the tangential trace of the constant vector (1, 0, 0) for the electric and magnetic trace, and computing the error

in the magnetic and electric trace between the application of
[C+

]2
and C+ to this trace data.

in the discretisation of A2 being the invertible RWG–RBC or BC–SNC pairings. The choice of spaces in Table 1 is based on
representing the tangential trace with an RWG space and the Neumann trace with a BC space. Alternatively, one could use
BC for the electric component and RWG for the magnetic component. This would lead to a discretisation in which E1 and E2
are swapped, and H1 and H2 are swapped. These and other discretisation schemes are also discussed in [6].

Using the BEM++ library, the stable multitrace operator may be created using the following lines of Python.

from bempp . api . operators . boundary import maxwell
mult itrace = maxwell . multitrace_operator ( grid , k )

We may then create the exterior Calderón projector with the following lines.

from bempp . api . operators . boundary import sparse
ident i ty = sparse . mult i t race_ ident i ty (

grid , spaces="maxwell" )
calderon = 0.5 ∗ ident i ty mult itrace

A complete example for a computationwith the Calderón projector is given in Fig. 7. It takes as electric andmagnetic trace
data the tangential trace of the constant vector (1, 0, 0). This is obviously not a pair of compatible Cauchy data for Maxwell.
It then applies the Calderón projector to obtain the numerically compatible pair of Cauchy data traces_1 and then applies
the Calderón projector one more time to obtain the pair of traces traces_2. In a stable implementation, both, traces_1
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(a) Approximations of the tangential component of (1, 0, 0) in RWG (left) and BC (right) spaces on a
discretised cube with 2202 edges.

(b) The result of applying the Calderón projector to the functions in Fig. 8(a). These functions are (up
to discretisation error) valid exterior Maxwell Cauchy data.

Fig. 8. Visualisation of the Calderón projector applied to non-compatible Cauchy data.

and traces_2 should agree up to discretisation error, and indeed, the error electric_error in the electric component is
9.8 × 10−3 and the error magnetic_error in the magnetic component is 7.4 × 10−3.

It is important to note that we need to choose different discretisation spaces for the electric and magnetic trace. For the
electric trace we choose RWG basis functions, and for the magnetic trace we choose BC basis functions.

In Fig. 8, we show the electric and magnetic trace data obtained from taking the tangential trace of the vector (1, 0, 0)
(Fig. 8(a)), and the result of applying the Calderón projector to the incompatible pair of Cauchy data (Fig. 8(b)).

4.2. Implementational details

The discrete multitrace operator A consists of the two magnetic field operator discretisations H1 and H2, and the two
electric field operator discretisations E1 and E2. In practice, we only create two operators Ẽ, and H̃ , using RWG trial and test
functions on the barycentrically refined grid (note that in the implementation the twisting of the test functions with ν is
already contained in the definition of the weak forms). Let M̃ be the L2 mass matrix associated with this RWG space, defined
by

M̃ij =

∫
Γ

RWGi · RWGj,

where RWGi is the ith RWG basis function on the barycentrically refined grid. Let nowMRWG andMBC be the L2 massmatrices
with RWG and BC test functions on the coarse grid and for both matrices RWG trial functions on the barycentrically refined
grid. The operators Ei, and Hi, i = 1, 2, are now given as

H1 = MBCM̃−1H̃M̃−1MT
RWG, E1 = MBCM̃−1ẼM̃−1MT

BC ,

H2 = MRWGM̃−1H̃M̃−1MT
BC , E2 = MRWGM̃−1ẼM̃−1MT

RWG.

In [4], a similar construction of the matrices is suggested. The difference is that there permutation matrices that represent
the basis functions on the coarse mesh in terms of basis functions on the barycentric refinement are stated explicitly.
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The implicit construction here has the advantage that it is independent of the implementational details of the particular
space. All that is needed is the ability to construct mass matrices, which is often already available. A potential performance
pitfall is the application of the mass matrix inverse of M̃ for each matrix vector product with Ei or Ej. We automatically
precompute the sparse LU decomposition of M̃ . Even for fairly large meshes this is done in a few seconds.

5. Electric field integral equation (EFIE)

We now turn our attention to the EFIE. The EFIE is widely used in applications for low-frequency scattering from closed
and open surfaces. In its strong form the indirect EFIE to find the scattered field escat in (1) can be written as (see [13])

Eλ = γt
+einc. (35)

Correspondingly, the direct EFIE can be written as

Eπ = ( 12 Id + H)γt+einc. (36)

The direct EFIE is derived from the first line of the exterior Calderón projector. The unknown π has a physical meaning
as the Neumann trace of the scattered field. Once, the solution λ for the indirect EFIE or π for the direct EFIE is available the
solution escat can be computed using

escat = −Eλ (37)

for the indirect EFIE, and

escat = Hγt+einc − Eπ (38)

for the direct EFIE.
By itself the EFIE is ill-conditioned, making necessary either direct solvers or efficient preconditioners. The Calderón

identities described in Section 4.1 provide an efficient preconditioning strategy. From the top-left block of A2
=

1
4 Id it

follows that E2
= −

1
4 Id + H2. The eigenvalues of E accumulate at 0 and ∞ making discretisations of this operator highly

ill-conditioned. However, the operator H is compact on smooth surfaces [21, Section 5.5]. Hence, the eigenvalues of E2

accumulate at− 1
4 . Implementations of this self-regularising property depend on the ability to perform the operator product

E2 in a stable way. In Section 4.1, we saw how stable operator products are implemented, based on Buffa–Christiansen
bases, and this property will be used here to implement the preconditioning strategy. Further details on the Calderón
preconditioner for the EFIE can also be found in [4].

The numerical implementation of the EFIE is typically based on discretising the operator E in (35) and (36) by pairs of
RWG/SNC trial and dual spaces. For the direct EFIE, this implies that a discretisation of the Calderón projector is used, in
which the tangential trace data is represented with BC basis functions and the Neumann trace data is represented with RWG
basis functions.

In Fig. 9 we show the BEM++ implementation of the Calderón preconditioned indirect EFIE, based on the stable
formulation of the multitrace operator A. The EFIE operator is E2 from the discretisation of A, which maps from the RWG
to the BC space. The preconditioning operator is E1, which maps from the BC space to the RWG space. Correspondingly, the
right-hand side incident wave is discretised using BC functions to be compatible with the preconditioning operator. The
solution sol lives in the RWG space, which is the domain space of E2. The GMRES routine has the additional parameter
use_strong_form=True. This enables mass matrix preconditioning and further reduces the number of iterations. At the
end we discretise a domain potential operator over the RWG space of the solution function sol. This evaluates the potential
at arbitrary points in the domain.

We emphasise that BEM++ automatically only assembles a single electric field operator on the barycentric refinement of
the grid. The magnetic components of the multitrace operator are not assembled as they are not needed for the solution of
the problem.

Taking Ω as unit sphere, the incident wave einc =
[
eikz, 0, 0

]
, and k = 2, we discretise the EFIE on a series of triangular

grids with different levels of refinement. The number of GMRES iterations required to solve the linear system arising from
EFIE and the Calderón preconditioned EFIE applied to this example problem are shown in Fig. 10. It can be seen that while
the number of iterations required to solve the EFIE rises quickly as the grid is refined, the number of iterations required to
solve the preconditioned EFIE remains below 10.

Figs. 11 and 12 show electromagnetic waves scattering off more interesting obstacles. Both were computed using the
indirect Calderón preconditioned EFIE.

The left plot of Fig. 11 shows the wave einc = [0, 0, eikx], with k = 20π , scattering off the NASA almond benchmarking
shape, as defined in [22]. Thiswas discretised on a gridwith 2442 edges. The right plot shows the corresponding convergence
curve of the GMRES residual for the preconditioned EFIE.

Fig. 12 shows the wave einc = peikd·x, with p = [−1, 2, 0], d = [
2

√
5
, 1

√
5
, 0], and k = 5, scattering off a level 1 Menger

sponge, and the corresponding convergence curve. The Menger sponge was discretised using a grid with 4680 edges.
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Fig. 9. Code snippet to solve a preconditioned electric field problem.

6. Magnetic field integral equation (MFIE)

The MFIE can be represented in BEM++ as easily as the EFIE. The strong form of the indirect MFIE is (see [13])

(H −
1
2 Id)ξ = γt

+einc.

It is a valid formulation on closed domains. Its advantage compared to the EFIE is that on smooth domains, it is a compact
perturbation of the identity operator and therefore well suited to iterative solvers. However, the robust implementation of
the MFIE also on non-smooth domains requires the use of RWG trial spaces and RBC test spaces (see [5]). The MFIE can be
easily implemented as shown in the code snippet in Fig. 13.

In Fig. 14, we demonstrate the rate of convergence of the MFIE for solving the NASA almond and the Menger sponge
examples from Section 5. Both converge nicely without additional preconditioning. While the rate of convergence is slower
than in the preconditioned EFIE case, only one boundary operator needs to be applied for each iteration step, while the
preconditioned EFIE requires two applications.

7. Combined field integral equation (CFIE)

While the EFIE and MFIE are efficient for low-frequency Maxwell problems, they lead to break-down close to interior
resonances. The CFIE is immune to breakdown at resonances and is therefore particularly suitable for high-frequency
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Fig. 10. The number of GMRES iterations taken to solve the EFIE (orange triangles) and preconditioned EFIE (red circles) to a tolerance of 1 × 10−5 for
scattering from the unit sphere. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 11. Slice at z = 0 of squared electric field density of the wave einc = [0, 0, eikx], with k = 20π , scattering off the NASA almond, computed using the
indirect preconditioned EFIE discretised on a grid with 2442 edges; and the corresponding convergence of the GMRES residual.

scattering problems. Here, we focus on the direct CFIE and the stable version of it derived in [23]. In its strong form, it is
given as(

−RE +
1
2 Id + H

)
π = −R( 12 Id + H)γt+einc − Eγt

+einc. (39)

The CFIE is a linear combination of the direct MFIE, obtained from the second row of the exterior Calderón projector, and a
regularised direct EFIE, obtained bymultiplying the first rowof the exterior Calderón projectorwith a regularisation operator
R. Frequently, the EFIE component is multiplied with a complex scalar. This is not necessary here, as in our implementation
the electric field operator itself is already scaled with i.

We use the RWG space for the unknown Neumann trace π. Hence, we swap E1 and E2, and H1 and H2 in the discretisation
of the Calderón projector in Section 4.1.

It follows that we discretise H on the left-hand side of (39) with H1. Moreover, for E on the left-hand side we choose the
discrete operator E2. The operator E2 maps from RWG into BC, while H1 maps from RWG into RWG. We therefore require
that a discretisation of R maps from the BC space to the RWG space. We could for example choose the operator E1. But this
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Fig. 12. Slices at z = 0.5 and y = 0.5 of squared electric field density of the wave einc = peikd·x , with p = [−1, 2, 0], d = [
2

√
5
, 1

√
5
, 0], and k = 5

scattering off a level 1 Menger sponge; and the corresponding convergence of the GMRES residual. This was computed using the indirect preconditioned
EFIE discretised on a grid with 4680 edges.

Fig. 13. Code snippet for the implementation of the MFIE in BEM++ .

Fig. 14. GMRES residuals vs. iterations for the MFIE for the NASA almond (left) and Menger sponge (right) examples.
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Fig. 15. Code snippet for the implementation of the CFIE in BEM++ .

operator is not injective at interior electric eigenvalues. The solution is to choose E1 based on thewavenumber ik, instead of k
(see [23]). On the right-hand sidewe choose forH the discretisationH2 and for E the discretisation E1 to stay compatible with
the corresponding direct EFIE and direct MFIE formulation. We can easily implement this in the framework of BEM++ with
the code snippet in Fig. 15.

In Fig. 16, we demonstrate our CFIE implementation for a simple scattering problem on the unit sphere for varying
wavenumbers. While the CFIE shows a bounded and only slowly growing number of GMRES iterations, the number of
iterations for the EFIE and MFIE grow strongly in the neighbourhood of an interior resonance close to k = 12.5. In Fig. 17,
we show the convergence of GMRES for the CFIE applied to the NASA almond and Menger sponge examples from Sections 5
and 6.

Another construction of the CFIE based on the use of BC spaces was presented in [24]. In particular, the treatment of the
MFIE component in that paper differs from the proposed formulation in this section.

8. Concluding remarks

We have only discussed the Maxwell solver aspects of BEM++ . The goal is to make available advanced techniques for
the solution of electromagnetic scattering problems while hiding complex details associated with robust boundary integral
equation formulations for Maxwell. We have not discussed here the solution of Maxwell transmission problems. But the
proposed framework fits this very well as we need for each medium the corresponding multitrace operator A. Work on
single-trace and multi-trace transmission formulations is ongoing.

We have not included timing benchmarks in this paper since the focus is on the demonstration of the software framework
and not the performance comparison of different solvers. BEM++ internally uses its own thread and MPI parallelised H-
matrix implementation for the discretisation of integral operators, which is very efficient for low-frequency problems, but
also performs well in the medium frequency range.

Finally, we want to conclude this paper with an example adapted to the theme of this special issue. Fig. 18 shows the
electromagnetic field around perfectly conducting birthday cake (not for eating!) computed with BEM++ .

All examples in this paper were computed with version 3.1 of the BEM++ library, and will be made available in the form
of IPython Notebooks on www.bempp.com.

http://www.bempp.com
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Fig. 16. The number of GMRES iterations needed to solve the preconditioned EFIE (red circles), MFIE (blue squares) and CFIE (black diamonds), for the
problem on the unit sphere with 4809 grid edges as the wavenumber increases. Close to k = 12.5 there is an interior resonance, which causes the number
of iterations for the EFIE andMFIE to explode, while the CFIE’s iteration count stays small. (For interpretation of the references to colour in this figure legend,
the reader is referred to the web version of this article.)

Fig. 17. GMRES residuals vs. iterations for the CFIE for the NASA almond (left) and Menger sponge (right) examples.

Fig. 18. Slices of the squared electric field density of the wave einc = [0, 0, eikx], with k = 8, scattering off a birthday cake, computed using the
preconditioned EFIE discretised on a grid with 3225 edges.
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