mscroggs.co.uk
mscroggs.co.uk

subscribe

Blog

 2020-02-16 
This is the fifth post in a series of posts about my PhD thesis.
In the fifth and final chapter of my thesis, we look at how boundary conditions can be weakly imposed on the Helmholtz equation.

Analysis

As in chapter 4, we must adapt the analysis of chapter 3 to apply to Helmholtz problems. The boundary operators for the Helmholtz equation satisfy less strong conditions than the operators for Laplace's equation (for Laplace's equation, the operators satisfy a condition called coercivity; for Helmholtz, the operators satisfy a weaker condition called Gårding's inequality), making proving results about Helmholtz problem harder.
After some work, we are able to prove an a priori error bound (with \(a=\tfrac32\) for the spaces we use):
$$\left\|u-u_h\right\|\leqslant ch^{a}\left\|u\right\|$$

Numerical results

As in the previous chapters, we use Bempp to show that computations with this method match the theory.
The error of our approximate solutions of a Dirichlet (left) and mixed Dirichlet–Neumann problems in the exterior of a sphere with meshes with different values of \(h\). The dashed lines show order \(\tfrac32\) convergence.

Wave scattering

Boundary element methods are often used to solve Helmholtz wave scattering problems. These are problems in which a sound wave is travelling though a medium (eg the air), then hits an object: you want to know what the sound wave that scatters off the object looks like.
If there are multiple objects that the wave is scattering off, the boundary element method formulation can get quite complicated. When using weak imposition, the formulation is simpler: this one advantage of this method.
The following diagram shows a sound wave scattering off a mixure of sound-hard and sound-soft spheres. Sound-hard objects reflect sound well, while sound-soft objects absorb it well.
A sound wave scattering off a mixture of sound-hard (white) and sound-soft (black) spheres.
If you are trying to design something with particular properties—for example, a barrier that absorbs sound—you may want to solve lots of wave scattering problems on an object on some objects with various values taken for their reflective properties. This type of problem is often called an inverse problem.
For this type of problem, weakly imposing boundary conditions has advantages: the discretisation of the Calderón projector can be reused for each problem, and only the terms due to the weakly imposed boundary conditions need to be recalculated. This is an advantages as the boundary condition terms are much less expensive (ie they use much less time and memory) to calculate than the Calderón term that is reused.

This concludes chapter 5, the final chapter of my thesis. Why not celebrate reaching the end by cracking open the following figure before reading the concluding blog post.
An acoustic wave scattering off a sound-hard champagne bottle and a sound-soft cork.
Previous post in series
PhD thesis, chapter 4
This is the fifth post in a series of posts about my PhD thesis.
Next post in series
PhD thesis, chapter ∞

Similar posts

PhD thesis, chapter 4
PhD thesis, chapter 3
PhD thesis, chapter ∞
PhD thesis, chapter 2

Comments

Comments in green were written by me. Comments in blue were not written by me.
 Add a Comment 


I will only use your email address to reply to your comment (if a reply is needed).

Allowed HTML tags: <br> <a> <small> <b> <i> <s> <sup> <sub> <u> <spoiler> <ul> <ol> <li>
To prove you are not a spam bot, please type "vector" in the box below (case sensitive):

Archive

Show me a random blog post
 2020 

May 2020

A surprising fact about quadrilaterals
Interesting tautologies

Mar 2020

Log-scaled axes

Feb 2020

PhD thesis, chapter ∞
PhD thesis, chapter 5
PhD thesis, chapter 4
PhD thesis, chapter 3
Inverting a matrix
PhD thesis, chapter 2

Jan 2020

PhD thesis, chapter 1
Gaussian elimination
Matrix multiplication
Christmas (2019) is over
 2019 
▼ show ▼
 2018 
▼ show ▼
 2017 
▼ show ▼
 2016 
▼ show ▼
 2015 
▼ show ▼
 2014 
▼ show ▼
 2013 
▼ show ▼
 2012 
▼ show ▼

Tags

matrices trigonometry news statistics latex php hats royal baby matrix of cofactors game show probability menace final fantasy palindromes cross stitch rhombicuboctahedron logic quadrilaterals countdown sport logs european cup propositional calculus people maths inline code probability numerical analysis pac-man preconditioning python big internet math-off matrix multiplication ternary asteroids data visualisation christmas graph theory dragon curves mathsteroids misleading statistics platonic solids data geogebra sobolev spaces draughts the aperiodical exponential growth dataset computational complexity oeis cambridge captain scarlet twitter light books ucl harriss spiral tennis geometry video games braiding royal institution game of life world cup sound estimation plastic ratio tmip games talking maths in public london sorting puzzles speed inverse matrices fractals football reddit finite element method error bars chess binary weak imposition stickers coins graphs determinants frobel folding paper hexapawn bodmas raspberry pi weather station convergence javascript bempp curvature flexagons radio 4 christmas card map projections gerry anderson wool polynomials approximation london underground chalkdust magazine gaussian elimination triangles rugby go squares simultaneous equations pythagoras noughts and crosses folding tube maps bubble bobble chebyshev mathsjam golden spiral golden ratio electromagnetic field signorini conditions manchester interpolation matt parker advent calendar programming craft reuleaux polygons martin gardner boundary element methods wave scattering mathslogicbot accuracy manchester science festival dates phd arithmetic realhats hannah fry machine learning national lottery nine men's morris matrix of minors pizza cutting a gamut of games

Archive

Show me a random blog post
▼ show ▼
© Matthew Scroggs 2012–2020