mscroggs.co.uk
mscroggs.co.uk

subscribe

Blog

 2012-10-06 
This is the first post in a series of posts about tube map folding.
This week, after re-reading chapter two of Alex's Adventures in Numberland (where Alex learns to fold business cards into tetrahedrons, cubes and octahedrons) on the tube, I folded two tube maps into a tetrahedron:
Following this, I folded a cube, an octahedron and an icosahedron:
The tetrahedron, icosahedron and octahedron were all made in the same way, as seen in Numberland: folding the map in two, so that a pair of opposite corners meet, then folding the sides over to make a triangle:
In order to get an equilateral triangle at this point, paper with sides in a ratio of 1:√3 is required. Although it is not exact, the proportions of a tube map are close enough to this to get an almost equilateral triangle. Putting one of these pieces together with a mirror image piece (one where the other two corners were folded together at the start) gives a tetrahedron. The larger solids are obtained by using a larger number of maps.
The cube—also found in Numberland—can me made by placing two tube maps on each other at right angles and folding over the extra length:
Six of these pieces combine to give a cube.
Finally this morning, with a little help from the internet, I folded a dodecahedron, thus completing all the Platonic solids:
To spread the joy of folding tube maps, each time I take the tube, I am going to fold a tetrahedron from two maps and leave it on the maps when I leave the tube. I started this yesterday, leaving a tetrahedron on the maps at South Harrow. In the evening, it was still there:
Do you think it will still be there on Monday morning? How often do you think I will return to find a tetrahedron still there? I will be keeping a tetrahedron diary so we can find out the answers to these most important questions...
This is the first post in a series of posts about tube map folding.
Next post in series
Tube map Platonic solids, pt. 2

Similar posts

Tube map Platonic solids, pt. 3
Tube map Platonic solids, pt. 2
Tube map kaleidocycles
Tube map stellated rhombicuboctahedron

Comments

Comments in green were written by me. Comments in blue were not written by me.
New test comment please ignore
Matthew
×1   ×1   ×1   ×2   ×1     Reply
Test comment please ignore
Matthew
×1   ×1   ×1   ×2   ×1     Reply
 Add a Comment 


I will only use your email address to reply to your comment (if a reply is needed).

Allowed HTML tags: <br> <a> <small> <b> <i> <s> <sup> <sub> <u> <spoiler> <ul> <ol> <li>
To prove you are not a spam bot, please type "linear" in the box below (case sensitive):

Archive

Show me a random blog post
 2020 

Mar 2020

Log-scaled axes

Feb 2020

PhD thesis, chapter ∞
PhD thesis, chapter 5
PhD thesis, chapter 4
PhD thesis, chapter 3
Inverting a matrix
PhD thesis, chapter 2

Jan 2020

PhD thesis, chapter 1
Gaussian elimination
Matrix multiplication
Christmas (2019) is over
 2019 
▼ show ▼
 2018 
▼ show ▼
 2017 
▼ show ▼
 2016 
▼ show ▼
 2015 
▼ show ▼
 2014 
▼ show ▼
 2013 
▼ show ▼
 2012 
▼ show ▼

Tags

fractals dataset national lottery golden ratio logs sobolev spaces games braiding polynomials speed talking maths in public books dragon curves matt parker misleading statistics interpolation coins error bars bodmas flexagons news wool mathsjam folding paper inverse matrices christmas exponential growth advent calendar game of life cambridge boundary element methods tmip programming rhombicuboctahedron hannah fry curvature plastic ratio machine learning reuleaux polygons probability data visualisation puzzles cross stitch pythagoras game show probability golden spiral weak imposition triangles reddit realhats menace final fantasy palindromes countdown weather station tennis pac-man raspberry pi mathsteroids latex people maths london underground bubble bobble royal baby ucl arithmetic matrices chebyshev numerical analysis folding tube maps radio 4 mathslogicbot graphs frobel gaussian elimination hexapawn the aperiodical simultaneous equations convergence finite element method stickers approximation oeis ternary geometry platonic solids bempp light royal institution london football craft phd sorting asteroids matrix of cofactors inline code javascript christmas card go a gamut of games sound graph theory noughts and crosses matrix multiplication computational complexity big internet math-off determinants python twitter data european cup manchester martin gardner chalkdust magazine draughts preconditioning video games wave scattering logic php trigonometry statistics matrix of minors hats electromagnetic field nine men's morris sport pizza cutting harriss spiral binary rugby map projections chess estimation propositional calculus manchester science festival gerry anderson signorini conditions accuracy captain scarlet dates world cup

Archive

Show me a random blog post
▼ show ▼
© Matthew Scroggs 2012–2020