mscroggs.co.uk
mscroggs.co.uk

subscribe

Blog

 2017-03-27 
Tomorrow, the new 12-sided one pound coin is released.
Although I'm excited about meeting this new coin, I am also a little sad, as its release ends the era in which all British coins are shapes of constant width.

Shapes of constant width

A shape of constant width is a shape that is the same width in every direction, so these shapes can roll without changing height. The most obvious such shape is a circle. But there are others, including the shape of the seven-sided 50p coin.
As shown below, each side of a 50p is part of a circle centred around the opposite corner. As a 50p rolls, its height is always the distance between one of the corners and the side opposite, or in other words the radius of this circle. As these circles are all the same size, the 50p is a shape of constant width.
Shapes of constant width can be created from any regular polygon with an odd number of sides, by replacing the sides by parts of circles centred at the opposite corner. The first few are shown below.
It's also possible to create shapes of constant width from irregular polygons with an odd number, but it's not possible to create them from polygons with an even number of sides. Therefore, the new 12-sided pound coin will be the first non-constant width British coin since the (also 12-sided) threepenny bit was phased out in 1971.
Back in 2014, I wrote to my MP in an attempt to find out why the new coin was not of a constant width. He forwarded my letter to the Treasury, but I never heard back from them.

Pizza cutting

When cutting a pizza into equal shaped pieces, the usual approach is to cut along a few diameters to make triangles. There are other ways to fairly share pizza, including the following (that has appeared here before as an answer to this puzzle):
The slices in this solution are closely related to a triangle of constant width. Solutions can be made using other shapes of constant width, including the following, made using a constant width pentagon and heptagon (50p):
There are many more ways to cut a pizza into equal pieces. You can find them in Infinite families of monohedral disk tilings by Joel Haddley and Stephen Worsley [1].
You can't use the shape of a new pound coin to cut a pizza though.
Edit: Speaking of new £1 coins, I made this stupid video with Adam "Frownsend" Townsend about them earlier today:

Infinite families of monohedral disk tilings by Joel Haddley and Stephen Worsley. December 2015. [link]
                        
(Click on one of these icons to react to this blog post)

You might also enjoy...

Comments

Comments in green were written by me. Comments in blue were not written by me.
 Add a Comment 


I will only use your email address to reply to your comment (if a reply is needed).

Allowed HTML tags: <br> <a> <small> <b> <i> <s> <sup> <sub> <u> <spoiler> <ul> <ol> <li> <logo>
To prove you are not a spam bot, please type "hexagon" in the box below (case sensitive):
 2014-03-29 
Following my last post, I wrote to my MP (click to enlarge):
Today I received this reply (click to enlarge):
I'm excited about hearing what the Treasury has to say about it...
                        
(Click on one of these icons to react to this blog post)

You might also enjoy...

Comments

Comments in green were written by me. Comments in blue were not written by me.
 Add a Comment 


I will only use your email address to reply to your comment (if a reply is needed).

Allowed HTML tags: <br> <a> <small> <b> <i> <s> <sup> <sub> <u> <spoiler> <ul> <ol> <li> <logo>
To prove you are not a spam bot, please type "q" then "u" then "o" then "t" then "i" then "e" then "n" then "t" in the box below (case sensitive):
 2014-03-19 
Vending machines identify coins by measuring their width. Circular coins have the same width in every direction, so designers of vending machines do not need to worry about incorrectly rotated coins causing a blockage or being misidentified. But what about seven-sided 20p and 50p coins?
Perhaps surprisingly, 20p and 50p coins also have a constant width, as show by this video. In fact, the sides of any regular shape with an odd number of sides can be curved to give the shape a constant width.
3, 5, 7 and 9 sided shapes of constant width.
Today, a new 12-sided £1 coin was unveiled. One reason for the number of sides was to make the coin easily identified by touch. However, as only polygons with an odd number of sides can be made into shapes of constant width, this new coin will have a different width when measured corner to corner or side to side. This could lead to vending machines not recognising coins unless a new mechanism is added to correctly align the coin before measuring.
Perhaps an 11-sided or 13-sided design would be a better idea, as this would be easily distinguishable from other coins by touch which being a constant width to allow machines to identify it.
                        
(Click on one of these icons to react to this blog post)

You might also enjoy...

Comments

Comments in green were written by me. Comments in blue were not written by me.
 Add a Comment 


I will only use your email address to reply to your comment (if a reply is needed).

Allowed HTML tags: <br> <a> <small> <b> <i> <s> <sup> <sub> <u> <spoiler> <ul> <ol> <li> <logo>
To prove you are not a spam bot, please type "nogaced" backwards in the box below (case sensitive):

Archive

Show me a random blog post
 2024 

Feb 2024

Zines, pt. 2

Jan 2024

Christmas (2023) is over
 2023 
▼ show ▼
 2022 
▼ show ▼
 2021 
▼ show ▼
 2020 
▼ show ▼
 2019 
▼ show ▼
 2018 
▼ show ▼
 2017 
▼ show ▼
 2016 
▼ show ▼
 2015 
▼ show ▼
 2014 
▼ show ▼
 2013 
▼ show ▼
 2012 
▼ show ▼

Tags

datasaurus dozen convergence christmas hyperbolic surfaces puzzles statistics matrix of minors javascript matt parker logic harriss spiral cross stitch chess flexagons electromagnetic field squares numerical analysis rugby bempp arithmetic light oeis gerry anderson reddit zines games gather town newcastle reuleaux polygons craft pizza cutting preconditioning pac-man nine men's morris menace cambridge edinburgh quadrilaterals trigonometry chebyshev people maths christmas card stickers polynomials national lottery video games ternary graph theory graphs frobel curvature stirling numbers youtube realhats talking maths in public geogebra manchester science festival london bubble bobble final fantasy folding paper propositional calculus golden ratio hats weather station mathsteroids data visualisation draughts game of life football hexapawn wave scattering crossnumber big internet math-off fence posts numbers exponential growth map projections raspberry pi databet gaussian elimination 24 hour maths logo radio 4 standard deviation noughts and crosses sobolev spaces world cup data anscombe's quartet pythagoras determinants accuracy tmip recursion machine learning mean php error bars sound plastic ratio news books tennis approximation signorini conditions speed matrix of cofactors estimation royal institution dataset wool weak imposition finite element method pi programming palindromes manchester mathsjam advent calendar binary inverse matrices dates dragon curves matrices errors bodmas python rhombicuboctahedron misleading statistics asteroids golden spiral crochet royal baby martin gardner pi approximation day simultaneous equations coins latex go the aperiodical a gamut of games correlation triangles turtles logs london underground boundary element methods interpolation game show probability pascal's triangle fonts geometry probability braiding fractals dinosaurs european cup live stream computational complexity countdown folding tube maps sorting inline code phd matrix multiplication sport guest posts platonic solids chalkdust magazine runge's phenomenon captain scarlet mathslogicbot finite group ucl hannah fry

Archive

Show me a random blog post
▼ show ▼
© Matthew Scroggs 2012–2024