# Blog

## Archive

Show me a Random Blog Post**2017**

**2016**

**2015**

**2014**

**2013**

**2012**

## Tags

folding paper folding tube maps london underground platonic solids rhombicuboctahedron raspberry pi weather station programming python php news royal baby probability game show probability christmas flexagons frobel coins reuleaux polygons countdown football world cup sport stickers tennis braiding craft wool emf camp people maths trigonometry logic propositional calculus twitter mathslogicbot oeis pac-man graph theory video games games chalkdust magazine menace machine learning javascript martin gardner reddit national lottery rugby puzzles advent game of life dragon curves fractals pythagoras geometry triangles european cup dates palindromes chalkdust christmas card bubble bobble asteroids final fantasy curvature binary arithmetic bodmas statistics error bars estimation accuracy**2017-03-08 03:22:57**

## Dragon Curves II

This post appeared in issue 05 of

*Chalkdust*. I strongly recommend reading the rest of*Chalkdust*.Take a long strip of paper. Fold it in half in the same direction a few times. Unfold it and look at the shape the edge of the paper
makes. If you folded the paper \(n\) times, then the edge will make an order \(n\) dragon curve, so called because it faintly resembles a
dragon. Each of the curves shown on the cover of issue 05 of

*Chalkdust*is an order 10 dragon curve.The dragon curves on the cover show that it is possible to tile the entire plane with copies of dragon curves of the same order. If any
readers are looking for an excellent way to tile a bathroom, I recommend getting some dragon curve-shaped tiles made.

An order \(n\) dragon curve can be made by joining two order \(n-1\) dragon curves with a 90° angle between their tails. Therefore, by
taking the cover's tiling of the plane with order 10 dragon curves, we may join them into pairs to get a tiling with order 11 dragon
curves. We could repeat this to get tilings with order 12, 13, and so on... If we were to repeat this

*ad infinitum*we would arrive at the conclusion that an order \(\infty\) dragon curve will cover the entire plane without crossing itself. In other words, an order \(\infty\) dragon curve is a space-filling curve.Like so many other interesting bits of recreational maths, dragon curves were popularised by Martin Gardner in one of his

*Mathematical Games*columns in*Scientific American*. In this column, it was noted that the endpoints of dragon curves of different orders (all starting at the same point) lie on a logarithmic spiral. This can be seen in the diagram below. Although many of their properties have been known for a long time and are well studied, dragon curves continue to appear in new and
interesting places. At last year's Maths Jam conference, Paul Taylor gave a talk about my favourite surprise occurrence of
a dragon.

Normally when we write numbers, we write them in base ten, with the digits in the number representing (from right to left) ones, tens,
hundreds, thousands, etc. Many readers will be familiar with binary numbers (base two), where the powers of two are used in the place of
powers of ten, so the digits represent ones, twos, fours, eights, etc.

In his talk, Paul suggested looking at numbers in base -1+i (where i is the square root of -1; you can find more adventures of i here) using the digits 0 and 1. From right to left, the columns of numbers in this
base have values 1, -1+i, -2i, 2+2i, -4, etc. The first 11 numbers in this base are shown below.

Number in base -1+i | Complex number |

0 | 0 |

1 | 1 |

10 | -1+i |

11 | (-1+i)+(1)=i |

100 | -2i |

101 | (-2i)+(1)=1-2i |

110 | (-2i)+(-1+i)=-1-i |

111 | (-2i)+(-1+i)+(1)=-i |

1000 | 2+2i |

1001 | (2+2i)+(1)=3+2i |

1010 | (2+2i)+(-1+i)=1+3i |

Complex numbers are often drawn on an Argand diagram: the real part of the number is plotted on the horizontal axis and the imaginary part
on the vertical axis. The diagram to the left shows the numbers of ten digits or less in base -1+i on an Argand diagram. The points form
an order 10 dragon curve! In fact, plotting numbers of \(n\) digits or less will draw an order \(n\) dragon curve.

Brilliantly, we may now use known properties of dragon curves to discover properties of base -1+i. A level \(\infty\) dragon curve covers
the entire plane without intersecting itself: therefore every Gaussian integer (a number of the form \(a+\text{i} b\) where \(a\) and
\(b\) are integers) has a unique representation in base -1+i. The endpoints of dragon curves lie on a logarithmic spiral: therefore
numbers of the form \((-1+\text{i})^n\), where \(n\) is an integer, lie on a logarithmic spiral in the complex plane.

If you'd like to play with some dragon curves, you can download the Python code used
to make the pictures here.

### Similar Posts

Dragon Curves | The Mathematical Games of Martin Gardner | MENACE | Is MEDUSA the New BODMAS? |

### Comments

Comments in green were written by me. Comments in blue were not written by me.

**2017-02-25 14:50:20**

## The Importance of Estimation Error

Recently, I've noticed a few great examples of misleading uses of numbers in news articles.

On 15 Feb, BBC News published a breaking news article with the headline
"UK unemployment falls by 7,000 to 1.6m".
This fall of 7,000 sounds big; but when compared to the total of 1.6m, it
is insignificant. The change could more accurately be described as a fall from 1.6m to 1.6m.

But there is a greater problem with this figure. In the
original Office of National Statistics (ONS) report,
the fall of 7,000 was accompanied by a 95% confidence interval of ±80,000.
When calculating figures about large populations (such as unemployment levels), it is impossible to ask every person in the UK whether they
are employed or not. Instead, data is gathered from a sample and this is used to estimate the total number. The 95% confidence interval
gives an idea of the accuracy of this estimation: 95% of the time, the true number will lie of the confidence interval. Therefore, we can
think of the 95% confidence interval as being a range in which the figure lies (although this is not true, it is a helpful way to think
about it).

Compared to the size of its confidence interval (±80,000), the fall of 7,000 is almost indistinguishable from zero. This means that it
cannot be said with any confidence whether the unemployment level rose or fell. This is demonstrated in the following diagram.

To be fair to the BBC, the headline of the article changed to "UK wage growth outpaces inflation"
once the article was upgraded from breaking news to a complete article, and a mention of the lack of confidence in the change was added.

On 23 Feb, I noticed another BBC News with misleading figures: Net migration to UK falls by 49,000.
This 49,000 is the difference between
322,000 (net migration for the year ending 2015) and
273,000 (net migration for the year ending 2016).
However both these figures are estimates: in the original ONS report,
they were placed in 95% confidence intervals of ±37,000 and ±41,000 respectively. As can be seen in the diagram below,
there is a significant portion where these intervals overlap, so it cannot be said with any confidence whether or not net immigration actually fell.

Perhaps the blame for this questionable figure lies with the ONS, as it appeared prominently in their report while the discussion of its
accuracy was fairly well hidden. Although I can't shift all blame from the journalists: they should really be investigating the quality of these
figures, however well advertised their accuracy is.

Both articles criticised here appeared on BBC News. This is not due to the BBC being especially bad with figures, but simply due to the
fact that I spend more time reading news on the BBC than in other places, so noticed these figures there. I quick Google search reveals that the unemployment figure was
also reported, with little to no discussion of accuracy, by
The Guardian,
the Financial Times, and
Sky News.

### Similar Posts

Euro 2016 Stickers | How to Kick a Conversion | How Much Will I Win on the New National Lottery? | Tennis Maths |

### Comments

Comments in green were written by me. Comments in blue were not written by me.

**Add a Comment**

**2017-01-13 04:32:41**

## Is MEDUSA the New BODMAS?

I wrote this post with, and after much discussion with Adam Townsend. It also appeared on the Chalkdust Magazine blog.

Recently, Colin "IceCol" Beveridge blogged about something that's been irking him for a while: those annoying social media posts that tell you to work out a sum, such as \(3-3\times6+2\), and state that only $n$% of people will get it right (where \(n\) is quite small). Or as he calls it "fake maths".

This got me thinking about everyone's least favourite primary school acronym: BODMAS (sometimes known as BIDMAS, or PEMDAS if you're American). As I'm sure you've been trying to forget, BODMAS stands for "

**B**rackets, (to the power)**O**f,**D**ivision,**M**ultiplication,**A**ddition,**S**ubtraction" and tells you in which order the operations should be performed.Now, I agree that we all need to do operations in the same order (just imagine trying to explain your working out to someone who uses

*BADSOM*!) but BODMAS isn't the order mathematicians use. It's simply wrong. Take the sum \(4-3+1\) as an example. Anyone can tell you that the answer is 2. But BODMAS begs to differ: addition comes first, giving 0!The problem here is that in reality, we treat addition and subtraction as equally important, so sums involving just these two operations are calculated from left-to-right. This caveat is quite a lot more to remember on top of BODMAS, but there's actually no need: Doing all the subtractions before additions will always give you the same answer as going from left-to-right. The same applies to division and multiplication, but luckily these two are in the correct order already in BODMAS (but no luck if you're using PEMDAS).

So instead of BODMAS, we should be using

*BODMSA*. But that's unpronounceable, so instead we suggest that from now on you use**MEDUSA**. That's right,**MEDUSA**:**M**abano (*brackets*in Swahili)**E**xponentiation**D**ivision**U**kubuyabuyelela (*multiplication*in Zulu)**S**ubtraction**A**ddition

This is big news. MEDUSA vs BODMAS could be this year's pi vs tau... Although it's not actually the biggest issue when considering sums like \(3-3\times6+2\).

The real problem with \(3-3\times6+2\) is that it is written in a purposefully confusing and ambiguous order. Compare the following sums:

$$3-3\times6+2$$ $$3+2-3\times6$$ $$3+2-(3\times6)$$
In the latter two, it is much harder to make a mistake in the order of operations, because the correct order is much closer to normal left-to-right reading order, helping the reader to avoid common mistakes. Good mathematics is about good communication, not tricking people. This is why questions like this are "fake maths": real mathematicians would never ask them. If we take the time to write clearly, then I bet more than \(n\)% of people will be able get the correct answer.

### Similar Posts

Dragon Curves II | The Mathematical Games of Martin Gardner | How to Kick a Conversion | How Much Will I Win on the New National Lottery? |

### Comments

Comments in green were written by me. Comments in blue were not written by me.

**Add a Comment**

**2016-12-28 06:49:35**

## Christmas (2016) is Over

More than ten correct solutions to this year's Advent calendar puzzle competition were submitted on Christmas Day, so the competition is now over.
(Although you can still submit your answers to get me to check them.) Thank-you to everyone who took part in the puzzle, I've had a lot of
fun watching your progress and talking to you on Twitter, Reddit, etc. You can find all the puzzles and answers (from 1 January) here.

The (very) approximate locations of all the entries I have received so far are shown on this map:

This year's winners have been randomly selected from the 29 correct entries on Christmas Day. They are:

1 | Jack Jiang |

2 | Steve Paget |

3 | Joe Gage |

4 | Tony Mann |

5 | Stephen Cappella |

6 | Cheng Wai Koo |

7 | Demi Xin |

8 | Lyra |

9 | David Fox |

10 | Bob Dinnage |

Your prizes will be on their way in early January.

Now that the competition has ended, I can give away a secret. Last year, Neal
suggested that it would be fun if a binary picture was hidden in the answers. So this year I hid one. If you write all the answers in binary, with
each answer below the previous and colour in the 1s black, you will see this:

I also had a lot of fun this year making up the names, locations, weapons and motives for the final murder mystery puzzle. In case you missed them these were:

# | Murder suspect | Motive |

1 | Dr. Uno (uno = Spanish 1) | Obeying nameless entity |

2 | Mr. Zwei (zwei = German 2) | To worry others |

3 | Ms. Trois (trois = French 3) | To help really evil elephant |

4 | Mrs. Quattro (quattro = Italian 4) | For old unknown reasons |

5 | Prof. Pum (pum = Welsh 5) | For individual violent end |

6 | Miss. Zes (zes = Dutch 6) | Stopping idiotic xenophobia |

7 | Lord Seacht (seacht = Irish 7) | Suspect espied victim eating newlyweds |

8 | Lady Oito (oito = Portuguese 8) | Epic insanity got him today |

9 | Rev. Novem (novem = Latin 9) | Nobody in newsroom expected |

# | Location | Weapon |

1 | Throne room | Wrench (1 vowel) |

2 | Network room | Rope (2 vowels) |

3 | Beneath reeds | Revolver (3 vowels) |

4 | Edge of our garden | Lead pipe (4 vowels) |

5 | Fives court | Neighbour's sword (5 vowels) |

6 | On the sixth floor | Super banana bomb (6 vowels) |

7 | Sparse venue | Antique candlestick (7 vowels) |

8 | Weightlifting room | A foul tasting poison (8 vowels) |

9 | Mathematics mezzanine | Run over with an old Ford Focus (9 vowels) |

Finally, well done to Scott,
Matthew Schulz,
Michael Gustin,
Daniel Branscombe,
Kei Nishimura-Gasparian,
Henry Hung,
Mark Fisher,
Jon Palin,
Thomas Tu,
Félix Breton,
Matt Hutton,
Miguel,
Fred Verheul,
Martine Vijn Nome,
Brennan Dolson,
Louis de Mendonca,
Roni,
Dylan Hendrickson,
Martin Harris,
Virgile Andreani,
Valentin Valciu,
and Adia Batic for submitting the correct answer but being too unlucky to win prizes this year. Thank you all for taking part and I'll see you
next December for the next competition.

### Similar Posts

Christmas (2016) is Coming! | Christmas (2015) is Over | Christmas (2015) is Coming! | Christmas Card 2016 |

### Comments

Comments in green were written by me. Comments in blue were not written by me.

**2017-02-03**

Steve Paget

**2017-01-19**

Thanks for setting this all up; I had a lot of fun solving the puzzles every day (and solving half them again when my cookie for the site somehow got deleted). I'll be sure to participate next time too!

SC

**2016-12-28**

Jack

**Add a Comment**

**2016-12-23 18:38:20**

## Video Game Surfaces

In many early arcade games, the size of the playable area was limited by the size of the screen. To make this area seem larger, or to
make gameplay more interesting, many games used wraparound; allowing the player to leave one side of the screen and return on another.
In Pac-Man, for example, the player could leave the left of the screen along the arrow shown and return
on the right, or vice versa.

Pac-Man's apparent teleportation from one side of the screen to the other may seem like magic, but it is more easily explained by
the shape of Pac-Man's world being a cylinder.

Rather than jumping or teleporting from one side to the other, Pac-Man simply travels round the cylinder.

Bubble Bobble was first released in 1986 and features two dragons, Bub and Bob, who are tasked with
rescuing their girlfriends by trapping 100 levels
worth of monsters inside bubbles. In these levels, the dragons and monsters may leave the bottom of the screen to return at the top.
Just like in Pac-Man, Bub and Bob live on the surface of a cylinder, but this time it's horizontal not vertical.

A very large number of arcade games use left-right or top-bottom wrapping and have the same cylindrical shape as Pac-Man or Bubble Bobble.
In Asteroids, both left-right and top-bottom wrapping are used.

The ships and asteroids in Asteroids live on the surface of a torus, or doughnut: a cylinder around to make its two ends meet up.

There is, however, a problem with the torus show here. In Asteroids, the ship will take amount of time to get from the left of the screen
to the right however high or low on the screen it is. But the ship can get around the inside of the torus shown faster than it can
around the outside, as the inside is shorter. This is because the screen of play is completely flat, while the inside and outside halves of
the torus are curved.

It is impossible to make a flat torus in three-dimensional space, but it is possible to make one in
four-dimensional space.
Therefore, while Asteroids seems to be a simple two-dimensional game, it is actually taking place on a four-dimensional surface.

Wrapping doesn't only appear in arcade games. Many games in the excellent Final Fantasy series use wrapping on the world maps, as shown here
on the Final Fantasy VIII map.

Just like in Asteroids, this wrapping means that Squall & co. carry out their adventure on the surface of a four-dimensional flat torus.
The game designers, however, seem to not have realised this, as shown in this screenshot including a spherical (!) map.

Due to the curvature of a sphere, lines that start off parallel eventually meet. This makes it impossible to map
nicely between a flat surface to a sphere (this is why so many different map projections exist), and heavily complicates the task of making
a game with a truly spherical map. So I'll let the Final Fantasy VIII game designers off. Especially since the rest of the game is such
incredible fun.

It is sad, however, that there are no games (at leat that I know of) that make use of the great variety of different wrapping rules available. By only
slightly adjusting the wrapping rules used in the games in this post, it is possible to make games on a variety of other surfaces,
such a Klein bottles or Möbius strips as shown below.

If you know of any games make use of these surfaces, let me know in the comments below!

### Similar Posts

Optimal Pac-Man | Proving Pythagoras' Theorem | The Mathematical Games of Martin Gardner | MENACE |

### Comments

Comments in green were written by me. Comments in blue were not written by me.

**2016-12-25**

Zeno Rogue

**2016-12-24**

See: http://zenorogue.blogspot.com.au/2012/03/hyperbolic-geometry-in-hyperbolic-rogue.html

maetl

**2016-12-24**

zaratustra

**2016-12-24**

F-Zero X had a more trivial track that was just the outward side of a regular ring, but it was rather weird too, because it meant that this was a looping track that had no turns.

Olaf

**2016-12-24**

gaurish

**Add a Comment**

Add a Comment