mscroggs.co.uk
mscroggs.co.uk

subscribe

Blog

Dragon curves II

 2017-03-08 
This post appeared in issue 05 of Chalkdust. I strongly recommend reading the rest of Chalkdust.
Take a long strip of paper. Fold it in half in the same direction a few times. Unfold it and look at the shape the edge of the paper makes. If you folded the paper \(n\) times, then the edge will make an order \(n\) dragon curve, so called because it faintly resembles a dragon. Each of the curves shown on the cover of issue 05 of Chalkdust is an order 10 dragon curve.
Top: Folding a strip of paper in half four times leads to an order four dragon curve (after rounding the corners). Bottom: A level 10 dragon curve resembling a dragon.
The dragon curves on the cover show that it is possible to tile the entire plane with copies of dragon curves of the same order. If any readers are looking for an excellent way to tile a bathroom, I recommend getting some dragon curve-shaped tiles made.
An order \(n\) dragon curve can be made by joining two order \(n-1\) dragon curves with a 90° angle between their tails. Therefore, by taking the cover's tiling of the plane with order 10 dragon curves, we may join them into pairs to get a tiling with order 11 dragon curves. We could repeat this to get tilings with order 12, 13, and so on... If we were to repeat this ad infinitum we would arrive at the conclusion that an order \(\infty\) dragon curve will cover the entire plane without crossing itself. In other words, an order \(\infty\) dragon curve is a space-filling curve.
Like so many other interesting bits of recreational maths, dragon curves were popularised by Martin Gardner in one of his Mathematical Games columns in Scientific American. In this column, it was noted that the endpoints of dragon curves of different orders (all starting at the same point) lie on a logarithmic spiral. This can be seen in the diagram below.
The endpoints of dragon curves of order 1 to 10 with a logarithmic spiral passing through them.
Although many of their properties have been known for a long time and are well studied, dragon curves continue to appear in new and interesting places. At last year's Maths Jam conference, Paul Taylor gave a talk about my favourite surprise occurrence of a dragon.
Normally when we write numbers, we write them in base ten, with the digits in the number representing (from right to left) ones, tens, hundreds, thousands, etc. Many readers will be familiar with binary numbers (base two), where the powers of two are used in the place of powers of ten, so the digits represent ones, twos, fours, eights, etc.
In his talk, Paul suggested looking at numbers in base -1+i (where i is the square root of -1; you can find more adventures of i here) using the digits 0 and 1. From right to left, the columns of numbers in this base have values 1, -1+i, -2i, 2+2i, -4, etc. The first 11 numbers in this base are shown below.
Number in base -1+iComplex number
00
11
10-1+i
11(-1+i)+(1)=i
100-2i
101(-2i)+(1)=1-2i
110(-2i)+(-1+i)=-1-i
111(-2i)+(-1+i)+(1)=-i
10002+2i
1001(2+2i)+(1)=3+2i
1010(2+2i)+(-1+i)=1+3i
Complex numbers are often drawn on an Argand diagram: the real part of the number is plotted on the horizontal axis and the imaginary part on the vertical axis. The diagram to the left shows the numbers of ten digits or less in base -1+i on an Argand diagram. The points form an order 10 dragon curve! In fact, plotting numbers of \(n\) digits or less will draw an order \(n\) dragon curve.
Numbers in base -1+i of ten digits or less plotted on an Argand diagram.
Brilliantly, we may now use known properties of dragon curves to discover properties of base -1+i. A level \(\infty\) dragon curve covers the entire plane without intersecting itself: therefore every Gaussian integer (a number of the form \(a+\text{i} b\) where \(a\) and \(b\) are integers) has a unique representation in base -1+i. The endpoints of dragon curves lie on a logarithmic spiral: therefore numbers of the form \((-1+\text{i})^n\), where \(n\) is an integer, lie on a logarithmic spiral in the complex plane.
If you'd like to play with some dragon curves, you can download the Python code used to make the pictures here.
                        
(Click on one of these icons to react to this blog post)

You might also enjoy...

Comments

Comments in green were written by me. Comments in blue were not written by me.
 Add a Comment 


I will only use your email address to reply to your comment (if a reply is needed).

Allowed HTML tags: <br> <a> <small> <b> <i> <s> <sup> <sub> <u> <spoiler> <ul> <ol> <li> <logo>
To prove you are not a spam bot, please type "v" then "e" then "c" then "t" then "o" then "r" in the box below (case sensitive):

Archive

Show me a random blog post
 2024 

Feb 2024

Zines, pt. 2

Jan 2024

Christmas (2023) is over
 2023 
▼ show ▼
 2022 
▼ show ▼
 2021 
▼ show ▼
 2020 
▼ show ▼
 2019 
▼ show ▼
 2018 
▼ show ▼
 2017 
▼ show ▼
 2016 
▼ show ▼
 2015 
▼ show ▼
 2014 
▼ show ▼
 2013 
▼ show ▼
 2012 
▼ show ▼

Tags

runge's phenomenon puzzles rugby hats pizza cutting binary python mean fractals braiding matrix of minors zines exponential growth logo approximation noughts and crosses crochet wool world cup asteroids sport dataset golden spiral martin gardner christmas card propositional calculus logic chebyshev gaussian elimination signorini conditions dinosaurs anscombe's quartet gerry anderson manchester science festival tennis matrices hannah fry cross stitch programming reddit simultaneous equations geogebra harriss spiral royal baby triangles map projections craft turtles preconditioning go video games graph theory youtube sound probability pac-man matrix of cofactors databet royal institution pi approximation day 24 hour maths big internet math-off ucl machine learning people maths matrix multiplication folding paper game of life graphs matt parker live stream flexagons pascal's triangle realhats countdown computational complexity platonic solids captain scarlet london underground rhombicuboctahedron wave scattering determinants bubble bobble advent calendar european cup latex php london convergence a gamut of games interpolation weather station weak imposition correlation bempp the aperiodical statistics javascript tmip news talking maths in public standard deviation radio 4 final fantasy data hexapawn national lottery palindromes boundary element methods recursion sorting christmas logs data visualisation phd accuracy guest posts estimation menace edinburgh stickers inline code dates gather town finite element method cambridge game show probability plastic ratio stirling numbers coins reuleaux polygons manchester trigonometry curvature football pi inverse matrices mathsteroids light pythagoras numerical analysis geometry mathsjam errors fence posts quadrilaterals finite group frobel mathslogicbot nine men's morris speed newcastle oeis polynomials folding tube maps chess squares games dragon curves fonts arithmetic books raspberry pi electromagnetic field hyperbolic surfaces chalkdust magazine draughts ternary golden ratio datasaurus dozen misleading statistics bodmas sobolev spaces error bars crossnumber numbers

Archive

Show me a random blog post
▼ show ▼
© Matthew Scroggs 2012–2024